Note
Go to the end to download the full example code.
Construct a model RDM#
This example shows how to create RDMs from arbitrary data. A common use case for this is to construct a “model” RDM to RSA against the brain data. In this example, we will create a RDM based on the length of the words shown during an EEG experiment.
# Import required packages
import mne
import mne_rsa
MNE-Python contains a built-in data loader for the kiloword dataset, which is used
here as an example dataset. Since we only need the words shown during the experiment,
which are in the metadata, we can pass preload=False
to prevent MNE-Python from
loading the EEG data, which is a nice speed gain.
data_path = mne.datasets.kiloword.data_path(verbose=True)
epochs = mne.read_epochs(data_path / "kword_metadata-epo.fif", preload=False)
# Show the metadata of 10 random epochs
print(epochs.metadata.sample(10))
Reading /home/runner/mne_data/MNE-kiloword-data/kword_metadata-epo.fif ...
Isotrak not found
Found the data of interest:
t = -100.00 ... 920.00 ms
0 CTF compensation matrices available
Adding metadata with 8 columns
960 matching events found
No baseline correction applied
0 projection items activated
WORD Concreteness ... ConsonantVowelProportion VisualComplexity
479 infusion 3.750000 ... 0.500000 57.703380
915 specific 3.210526 ... 0.625000 61.250325
139 safari 5.550000 ... 0.500000 59.139165
679 business 4.750000 ... 0.625000 67.532057
328 fluke 3.450000 ... 0.600000 59.822318
646 conduct 2.850000 ... 0.714286 64.737597
940 velocity 3.789474 ... 0.500000 58.044890
517 pore 5.400000 ... 0.500000 69.049383
821 answer 2.850000 ... 0.666667 71.991517
542 depth 3.350000 ... 0.800000 73.618241
[10 rows x 8 columns]
Now we are ready to create the “model” RDM, which will encode the difference in length between the words shown during the experiment.
rdm = mne_rsa.compute_rdm(epochs.metadata.NumberOfLetters, metric="euclidean")
# Plot the RDM
fig = mne_rsa.plot_rdms(rdm, title="Word length RDM")
fig.set_size_inches(3, 3) # Make figure a little bigger to show axis properly

Total running time of the script: (0 minutes 0.222 seconds)