Note
Go to the end to download the full example code.
Source-level RSA using a searchlight on surface data#
This example demonstrates how to perform representational similarity analysis (RSA) on source localized MEG data, using a searchlight approach.
In the searchlight approach, representational similarity is computed between the model and searchlight “patches”. A patch is defined by a seed vertex on the cortex and all vertices within a given radius. By default, patches are created using each vertex as a seed point, so you can think of it as a “searchlight” that scans along the cortex.
The radius of a searchlight can be defined in space, in time, or both. In this example, our searchlight will have a spatial radius of 2 cm. and a temporal radius of 20 ms.
The dataset will be the MNE-sample dataset: a collection of 288 epochs in which the participant was presented with an auditory beep or visual stimulus to either the left or right ear or visual field.
# sphinx_gallery_thumbnail_number=2
import mne
import mne_rsa
# Import required packages
from matplotlib import pyplot as plt
mne.set_log_level(False) # Be less verbose
mne.viz.set_3d_backend("pyvista")
'pyvistaqt'
We’ll be using the data from the MNE-sample set. To speed up computations in this example, we’re going to use one of the sparse source spaces from the testing set.
sample_root = mne.datasets.sample.data_path(verbose=True)
testing_root = mne.datasets.testing.data_path(verbose=True)
sample_path = sample_root / "MEG" / "sample"
testing_path = testing_root / "MEG" / "sample"
subjects_dir = sample_root / "subjects"
Creating epochs from the continuous (raw) data. We downsample to 100 Hz to speed up the RSA computations later on.
raw = mne.io.read_raw_fif(sample_path / "sample_audvis_filt-0-40_raw.fif")
events = mne.read_events(sample_path / "sample_audvis_filt-0-40_raw-eve.fif")
event_id = {"audio/left": 1, "audio/right": 2, "visual/left": 3, "visual/right": 4}
epochs = mne.Epochs(raw, events, event_id, preload=True)
epochs.resample(100)
It’s important that the model RDM and the epochs are in the same order, so that each row in the model RDM will correspond to an epoch. The model RDM will be easier to interpret visually if the data is ordered such that all epochs belonging to the same experimental condition are right next to each-other, so patterns jump out. This can be achieved by first splitting the epochs by experimental condition and then concatenating them together again.
epoch_splits = [
epochs[cl] for cl in ["audio/left", "audio/right", "visual/left", "visual/right"]
]
epochs = mne.concatenate_epochs(epoch_splits)
Now that the epochs are in the proper order, we can create a RDM based on the experimental conditions. This type of RDM is referred to as a “sensitivity RDM”. Let’s create a sensitivity RDM that will pick up the left auditory response when RSA-ed against the MEG data. Since we want to capture areas where left beeps generate a large signal, we specify that left beeps should be similar to other left beeps. Since we do not want areas where visual stimuli generate a large signal, we specify that beeps must be different from visual stimuli. Furthermore, since in areas where visual stimuli generate only a small signal, random noise will dominate, we also specify that visual stimuli are different from other visual stimuli. Finally left and right auditory beeps will be somewhat similar.
def sensitivity_metric(event_id_1, event_id_2):
"""Determine similarity between two epochs, given their event ids."""
if event_id_1 == 1 and event_id_2 == 1:
return 0 # Completely similar
if event_id_1 == 2 and event_id_2 == 2:
return 0.5 # Somewhat similar
elif event_id_1 == 1 and event_id_2 == 2:
return 0.5 # Somewhat similar
elif event_id_1 == 2 and event_id_1 == 1:
return 0.5 # Somewhat similar
else:
return 1 # Not similar at all
model_rdm = mne_rsa.compute_rdm(epochs.events[:, 2], metric=sensitivity_metric)
mne_rsa.plot_rdms(model_rdm, title="Model RDM")

<Figure size 200x200 with 2 Axes>
This example is going to be on source-level, so let’s load the inverse operator and apply it to obtain a cortical surface source estimate for each epoch. To speed up the computation, we going to load an inverse operator from the testing dataset that was created using a sparse source space with not too many vertices.
inv = mne.minimum_norm.read_inverse_operator(
testing_path / "sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif"
)
epochs_stc = mne.minimum_norm.apply_inverse_epochs(epochs, inv, lambda2=0.1111)
Performing the RSA. This will take some time. Consider increasing n_jobs
to
parallelize the computation across multiple CPUs.
rsa_vals = mne_rsa.rsa_stcs(
epochs_stc, # The source localized epochs
model_rdm, # The model RDM we constructed above
src=inv["src"], # The inverse operator has our source space
stc_rdm_metric="correlation", # Metric to compute the MEG RDMs
rsa_metric="kendall-tau-a", # Metric to compare model and EEG RDMs
spatial_radius=0.02, # Spatial radius of the searchlight patch
temporal_radius=0.02, # Temporal radius of the searchlight path
tmin=0,
tmax=0.3, # To save time, only analyze this time interval
n_jobs=1, # Only use one CPU core. Increase this for more speed.
verbose=True,
) # Set to True to display a progress bar
# Find the searchlight patch with highest RSA score
peak_vertex, peak_time = rsa_vals.get_peak(vert_as_index=True)
# Plot the result at the timepoint where the maximum RSA value occurs.
rsa_vals.plot("sample", subjects_dir=subjects_dir, initial_time=peak_time)

Calculating source space distances (limit=20.0 mm)...
Not adding patch information, dist_limit too small
Performing RSA between SourceEstimates and 1 model RDM(s)
Spatial radius: 0.02 meters
Using 498 vertices
Temporal radius: 2 samples
Time interval: 0-0.3 seconds
Number of searchlight patches: 14940
0%| | 0/14940 [00:00<?, ?patch/s]Creating spatio-temporal searchlight patches
0%| | 19/14940 [00:00<01:19, 187.63patch/s]
0%| | 38/14940 [00:00<01:19, 188.57patch/s]
0%| | 58/14940 [00:00<01:18, 189.30patch/s]
1%| | 78/14940 [00:00<01:18, 189.68patch/s]
1%| | 97/14940 [00:00<01:18, 189.17patch/s]
1%| | 116/14940 [00:00<01:18, 188.12patch/s]
1%| | 135/14940 [00:00<01:19, 187.33patch/s]
1%| | 154/14940 [00:00<01:19, 186.86patch/s]
1%| | 173/14940 [00:00<01:19, 185.33patch/s]
1%|▏ | 192/14940 [00:01<01:19, 186.23patch/s]
1%|▏ | 212/14940 [00:01<01:18, 187.50patch/s]
2%|▏ | 232/14940 [00:01<01:18, 188.28patch/s]
2%|▏ | 251/14940 [00:01<01:17, 188.63patch/s]
2%|▏ | 270/14940 [00:01<01:17, 188.55patch/s]
2%|▏ | 289/14940 [00:01<01:18, 187.76patch/s]
2%|▏ | 308/14940 [00:01<01:18, 187.50patch/s]
2%|▏ | 327/14940 [00:01<01:17, 187.61patch/s]
2%|▏ | 346/14940 [00:01<01:17, 188.19patch/s]
2%|▏ | 365/14940 [00:01<01:17, 187.95patch/s]
3%|▎ | 384/14940 [00:02<01:18, 186.39patch/s]
3%|▎ | 403/14940 [00:02<01:18, 186.04patch/s]
3%|▎ | 422/14940 [00:02<01:18, 185.96patch/s]
3%|▎ | 442/14940 [00:02<01:17, 187.18patch/s]
3%|▎ | 461/14940 [00:02<01:17, 187.38patch/s]
3%|▎ | 480/14940 [00:02<01:17, 187.75patch/s]
3%|▎ | 500/14940 [00:02<01:16, 188.77patch/s]
3%|▎ | 519/14940 [00:02<01:16, 188.20patch/s]
4%|▎ | 538/14940 [00:02<01:16, 187.53patch/s]
4%|▎ | 557/14940 [00:02<01:17, 186.77patch/s]
4%|▍ | 576/14940 [00:03<01:17, 186.51patch/s]
4%|▍ | 595/14940 [00:03<01:16, 186.39patch/s]
4%|▍ | 614/14940 [00:03<01:16, 186.15patch/s]
4%|▍ | 633/14940 [00:03<01:16, 186.12patch/s]
4%|▍ | 652/14940 [00:03<01:16, 186.06patch/s]
4%|▍ | 671/14940 [00:03<01:16, 185.93patch/s]
5%|▍ | 690/14940 [00:03<01:16, 186.00patch/s]
5%|▍ | 709/14940 [00:03<01:16, 186.06patch/s]
5%|▍ | 728/14940 [00:03<01:16, 186.61patch/s]
5%|▌ | 747/14940 [00:03<01:15, 187.48patch/s]
5%|▌ | 766/14940 [00:04<01:15, 187.18patch/s]
5%|▌ | 785/14940 [00:04<01:15, 186.67patch/s]
5%|▌ | 804/14940 [00:04<01:16, 185.92patch/s]
6%|▌ | 823/14940 [00:04<01:16, 185.61patch/s]
6%|▌ | 842/14940 [00:04<01:15, 185.75patch/s]
6%|▌ | 861/14940 [00:04<01:15, 185.64patch/s]
6%|▌ | 880/14940 [00:04<01:15, 185.07patch/s]
6%|▌ | 899/14940 [00:04<01:16, 183.91patch/s]
6%|▌ | 918/14940 [00:04<01:16, 183.68patch/s]
6%|▋ | 937/14940 [00:05<01:15, 184.42patch/s]
6%|▋ | 957/14940 [00:05<01:15, 186.35patch/s]
7%|▋ | 976/14940 [00:05<01:15, 185.91patch/s]
7%|▋ | 995/14940 [00:05<01:15, 185.81patch/s]
7%|▋ | 1015/14940 [00:05<01:14, 187.24patch/s]
7%|▋ | 1034/14940 [00:05<01:14, 186.64patch/s]
7%|▋ | 1053/14940 [00:05<01:14, 185.95patch/s]
7%|▋ | 1072/14940 [00:05<01:14, 186.67patch/s]
7%|▋ | 1091/14940 [00:05<01:13, 187.59patch/s]
7%|▋ | 1110/14940 [00:05<01:13, 188.28patch/s]
8%|▊ | 1129/14940 [00:06<01:13, 188.02patch/s]
8%|▊ | 1148/14940 [00:06<01:13, 188.40patch/s]
8%|▊ | 1168/14940 [00:06<01:12, 188.94patch/s]
8%|▊ | 1188/14940 [00:06<01:12, 189.45patch/s]
8%|▊ | 1208/14940 [00:06<01:12, 189.73patch/s]
8%|▊ | 1228/14940 [00:06<01:12, 189.97patch/s]
8%|▊ | 1247/14940 [00:06<01:12, 188.98patch/s]
8%|▊ | 1266/14940 [00:06<01:12, 188.18patch/s]
9%|▊ | 1285/14940 [00:06<01:12, 187.43patch/s]
9%|▊ | 1304/14940 [00:06<01:12, 187.01patch/s]
9%|▉ | 1323/14940 [00:07<01:13, 186.21patch/s]
9%|▉ | 1342/14940 [00:07<01:13, 186.07patch/s]
9%|▉ | 1361/14940 [00:07<01:12, 186.40patch/s]
9%|▉ | 1380/14940 [00:07<01:12, 187.08patch/s]
9%|▉ | 1399/14940 [00:07<01:12, 186.72patch/s]
9%|▉ | 1418/14940 [00:07<01:12, 186.28patch/s]
10%|▉ | 1437/14940 [00:07<01:12, 185.63patch/s]
10%|▉ | 1456/14940 [00:07<01:13, 184.53patch/s]
10%|▉ | 1475/14940 [00:07<01:13, 184.32patch/s]
10%|█ | 1495/14940 [00:07<01:12, 186.41patch/s]
10%|█ | 1514/14940 [00:08<01:11, 186.53patch/s]
10%|█ | 1533/14940 [00:08<01:12, 184.89patch/s]
10%|█ | 1552/14940 [00:08<01:12, 184.31patch/s]
11%|█ | 1571/14940 [00:08<01:12, 184.46patch/s]
11%|█ | 1590/14940 [00:08<01:12, 183.47patch/s]
11%|█ | 1609/14940 [00:08<01:12, 184.51patch/s]
11%|█ | 1628/14940 [00:08<01:12, 184.66patch/s]
11%|█ | 1647/14940 [00:08<01:12, 183.52patch/s]
11%|█ | 1666/14940 [00:08<01:11, 184.50patch/s]
11%|█▏ | 1685/14940 [00:09<01:11, 184.56patch/s]
11%|█▏ | 1704/14940 [00:09<01:12, 182.70patch/s]
12%|█▏ | 1723/14940 [00:09<01:12, 182.01patch/s]
12%|█▏ | 1742/14940 [00:09<01:12, 182.21patch/s]
12%|█▏ | 1761/14940 [00:09<01:11, 184.16patch/s]
12%|█▏ | 1780/14940 [00:09<01:11, 183.95patch/s]
12%|█▏ | 1799/14940 [00:09<01:12, 182.47patch/s]
12%|█▏ | 1818/14940 [00:09<01:12, 180.47patch/s]
12%|█▏ | 1837/14940 [00:09<01:12, 180.32patch/s]
12%|█▏ | 1856/14940 [00:09<01:11, 182.00patch/s]
13%|█▎ | 1875/14940 [00:10<01:11, 183.29patch/s]
13%|█▎ | 1894/14940 [00:10<01:10, 184.83patch/s]
13%|█▎ | 1913/14940 [00:10<01:10, 185.07patch/s]
13%|█▎ | 1932/14940 [00:10<01:10, 185.17patch/s]
13%|█▎ | 1951/14940 [00:10<01:10, 184.99patch/s]
13%|█▎ | 1970/14940 [00:10<01:09, 185.79patch/s]
13%|█▎ | 1989/14940 [00:10<01:09, 186.39patch/s]
13%|█▎ | 2008/14940 [00:10<01:09, 186.16patch/s]
14%|█▎ | 2027/14940 [00:10<01:09, 185.44patch/s]
14%|█▎ | 2046/14940 [00:10<01:09, 185.44patch/s]
14%|█▍ | 2065/14940 [00:11<01:09, 186.03patch/s]
14%|█▍ | 2084/14940 [00:11<01:09, 185.64patch/s]
14%|█▍ | 2103/14940 [00:11<01:09, 184.98patch/s]
14%|█▍ | 2122/14940 [00:11<01:09, 185.29patch/s]
14%|█▍ | 2141/14940 [00:11<01:08, 185.75patch/s]
14%|█▍ | 2160/14940 [00:11<01:08, 185.84patch/s]
15%|█▍ | 2179/14940 [00:11<01:09, 182.90patch/s]
15%|█▍ | 2198/14940 [00:11<01:09, 182.66patch/s]
15%|█▍ | 2217/14940 [00:11<01:08, 184.70patch/s]
15%|█▍ | 2236/14940 [00:12<01:09, 183.32patch/s]
15%|█▌ | 2255/14940 [00:12<01:09, 181.80patch/s]
15%|█▌ | 2274/14940 [00:12<01:08, 183.75patch/s]
15%|█▌ | 2293/14940 [00:12<01:09, 182.41patch/s]
15%|█▌ | 2312/14940 [00:12<01:09, 180.47patch/s]
16%|█▌ | 2331/14940 [00:12<01:09, 181.94patch/s]
16%|█▌ | 2350/14940 [00:12<01:08, 182.95patch/s]
16%|█▌ | 2369/14940 [00:12<01:08, 183.24patch/s]
16%|█▌ | 2388/14940 [00:12<01:08, 181.95patch/s]
16%|█▌ | 2407/14940 [00:12<01:09, 180.62patch/s]
16%|█▌ | 2426/14940 [00:13<01:09, 179.08patch/s]
16%|█▋ | 2445/14940 [00:13<01:09, 180.89patch/s]
16%|█▋ | 2464/14940 [00:13<01:08, 182.89patch/s]
17%|█▋ | 2483/14940 [00:13<01:07, 183.83patch/s]
17%|█▋ | 2502/14940 [00:13<01:08, 182.52patch/s]
17%|█▋ | 2521/14940 [00:13<01:08, 180.59patch/s]
17%|█▋ | 2540/14940 [00:13<01:07, 182.68patch/s]
17%|█▋ | 2559/14940 [00:13<01:07, 183.89patch/s]
17%|█▋ | 2578/14940 [00:13<01:06, 185.24patch/s]
17%|█▋ | 2597/14940 [00:14<01:06, 184.24patch/s]
18%|█▊ | 2616/14940 [00:14<01:07, 183.37patch/s]
18%|█▊ | 2635/14940 [00:14<01:06, 184.17patch/s]
18%|█▊ | 2654/14940 [00:14<01:06, 185.26patch/s]
18%|█▊ | 2673/14940 [00:14<01:05, 186.05patch/s]
18%|█▊ | 2692/14940 [00:14<01:05, 186.16patch/s]
18%|█▊ | 2711/14940 [00:14<01:05, 186.00patch/s]
18%|█▊ | 2730/14940 [00:14<01:05, 186.14patch/s]
18%|█▊ | 2749/14940 [00:14<01:06, 183.35patch/s]
19%|█▊ | 2768/14940 [00:14<01:06, 182.01patch/s]
19%|█▊ | 2787/14940 [00:15<01:07, 181.02patch/s]
19%|█▉ | 2806/14940 [00:15<01:07, 180.82patch/s]
19%|█▉ | 2825/14940 [00:15<01:06, 180.90patch/s]
19%|█▉ | 2844/14940 [00:15<01:07, 180.40patch/s]
19%|█▉ | 2863/14940 [00:15<01:06, 180.52patch/s]
19%|█▉ | 2882/14940 [00:15<01:06, 180.89patch/s]
19%|█▉ | 2901/14940 [00:15<01:06, 181.87patch/s]
20%|█▉ | 2920/14940 [00:15<01:05, 182.58patch/s]
20%|█▉ | 2939/14940 [00:15<01:05, 183.05patch/s]
20%|█▉ | 2958/14940 [00:15<01:05, 181.84patch/s]
20%|█▉ | 2977/14940 [00:16<01:05, 181.78patch/s]
20%|██ | 2996/14940 [00:16<01:05, 181.79patch/s]
20%|██ | 3015/14940 [00:16<01:05, 181.90patch/s]
20%|██ | 3034/14940 [00:16<01:05, 181.78patch/s]
20%|██ | 3053/14940 [00:16<01:05, 182.47patch/s]
21%|██ | 3072/14940 [00:16<01:04, 183.27patch/s]
21%|██ | 3091/14940 [00:16<01:04, 183.97patch/s]
21%|██ | 3110/14940 [00:16<01:03, 185.21patch/s]
21%|██ | 3129/14940 [00:16<01:04, 184.18patch/s]
21%|██ | 3148/14940 [00:17<01:04, 181.77patch/s]
21%|██ | 3167/14940 [00:17<01:04, 182.66patch/s]
21%|██▏ | 3186/14940 [00:17<01:04, 181.44patch/s]
21%|██▏ | 3205/14940 [00:17<01:05, 179.84patch/s]
22%|██▏ | 3223/14940 [00:17<01:05, 179.71patch/s]
22%|██▏ | 3242/14940 [00:17<01:04, 180.28patch/s]
22%|██▏ | 3261/14940 [00:17<01:04, 181.35patch/s]
22%|██▏ | 3280/14940 [00:17<01:03, 182.51patch/s]
22%|██▏ | 3299/14940 [00:17<01:03, 183.51patch/s]
22%|██▏ | 3318/14940 [00:17<01:03, 182.19patch/s]
22%|██▏ | 3337/14940 [00:18<01:03, 182.01patch/s]
22%|██▏ | 3356/14940 [00:18<01:03, 182.30patch/s]
23%|██▎ | 3375/14940 [00:18<01:03, 181.69patch/s]
23%|██▎ | 3394/14940 [00:18<01:03, 182.78patch/s]
23%|██▎ | 3413/14940 [00:18<01:02, 183.71patch/s]
23%|██▎ | 3432/14940 [00:18<01:02, 184.21patch/s]
23%|██▎ | 3451/14940 [00:18<01:02, 184.60patch/s]
23%|██▎ | 3470/14940 [00:18<01:02, 184.21patch/s]
23%|██▎ | 3489/14940 [00:18<01:02, 184.05patch/s]
23%|██▎ | 3508/14940 [00:18<01:01, 184.56patch/s]
24%|██▎ | 3527/14940 [00:19<01:01, 184.72patch/s]
24%|██▎ | 3546/14940 [00:19<01:02, 183.62patch/s]
24%|██▍ | 3565/14940 [00:19<01:02, 183.41patch/s]
24%|██▍ | 3584/14940 [00:19<01:01, 183.89patch/s]
24%|██▍ | 3603/14940 [00:19<01:01, 184.41patch/s]
24%|██▍ | 3622/14940 [00:19<01:01, 184.74patch/s]
24%|██▍ | 3641/14940 [00:19<01:01, 183.28patch/s]
24%|██▍ | 3660/14940 [00:19<01:02, 181.20patch/s]
25%|██▍ | 3679/14940 [00:19<01:01, 182.34patch/s]
25%|██▍ | 3698/14940 [00:20<01:01, 182.04patch/s]
25%|██▍ | 3717/14940 [00:20<01:02, 180.31patch/s]
25%|██▌ | 3736/14940 [00:20<01:02, 178.72patch/s]
25%|██▌ | 3755/14940 [00:20<01:02, 179.27patch/s]
25%|██▌ | 3774/14940 [00:20<01:01, 180.73patch/s]
25%|██▌ | 3793/14940 [00:20<01:01, 181.80patch/s]
26%|██▌ | 3812/14940 [00:20<01:01, 182.28patch/s]
26%|██▌ | 3831/14940 [00:20<01:01, 182.05patch/s]
26%|██▌ | 3850/14940 [00:20<01:01, 181.09patch/s]
26%|██▌ | 3869/14940 [00:20<01:00, 181.88patch/s]
26%|██▌ | 3888/14940 [00:21<01:00, 181.68patch/s]
26%|██▌ | 3907/14940 [00:21<01:00, 181.11patch/s]
26%|██▋ | 3926/14940 [00:21<01:01, 178.42patch/s]
26%|██▋ | 3944/14940 [00:21<01:01, 178.33patch/s]
27%|██▋ | 3962/14940 [00:21<01:01, 178.53patch/s]
27%|██▋ | 3981/14940 [00:21<01:01, 179.23patch/s]
27%|██▋ | 4000/14940 [00:21<01:00, 180.53patch/s]
27%|██▋ | 4019/14940 [00:21<00:59, 182.15patch/s]
27%|██▋ | 4038/14940 [00:21<00:59, 183.25patch/s]
27%|██▋ | 4057/14940 [00:22<00:59, 184.06patch/s]
27%|██▋ | 4076/14940 [00:22<00:58, 184.59patch/s]
27%|██▋ | 4095/14940 [00:22<00:58, 185.02patch/s]
28%|██▊ | 4114/14940 [00:22<00:58, 184.08patch/s]
28%|██▊ | 4133/14940 [00:22<00:58, 184.61patch/s]
28%|██▊ | 4152/14940 [00:22<00:58, 184.13patch/s]
28%|██▊ | 4171/14940 [00:22<00:58, 183.27patch/s]
28%|██▊ | 4190/14940 [00:22<00:58, 183.52patch/s]
28%|██▊ | 4209/14940 [00:22<00:58, 184.01patch/s]
28%|██▊ | 4228/14940 [00:22<00:58, 184.63patch/s]
28%|██▊ | 4247/14940 [00:23<00:57, 184.39patch/s]
29%|██▊ | 4266/14940 [00:23<00:58, 183.43patch/s]
29%|██▊ | 4285/14940 [00:23<00:58, 181.25patch/s]
29%|██▉ | 4304/14940 [00:23<00:58, 182.31patch/s]
29%|██▉ | 4323/14940 [00:23<00:57, 183.66patch/s]
29%|██▉ | 4342/14940 [00:23<00:58, 182.10patch/s]
29%|██▉ | 4361/14940 [00:23<00:58, 181.14patch/s]
29%|██▉ | 4380/14940 [00:23<00:58, 180.27patch/s]
29%|██▉ | 4399/14940 [00:23<00:57, 182.75patch/s]
30%|██▉ | 4418/14940 [00:23<00:57, 184.14patch/s]
30%|██▉ | 4437/14940 [00:24<00:56, 184.68patch/s]
30%|██▉ | 4456/14940 [00:24<00:56, 185.03patch/s]
30%|██▉ | 4475/14940 [00:24<00:56, 184.02patch/s]
30%|███ | 4494/14940 [00:24<00:56, 184.62patch/s]
30%|███ | 4513/14940 [00:24<00:56, 185.58patch/s]
30%|███ | 4532/14940 [00:24<00:55, 186.00patch/s]
30%|███ | 4551/14940 [00:24<00:56, 183.04patch/s]
31%|███ | 4570/14940 [00:24<00:57, 181.55patch/s]
31%|███ | 4589/14940 [00:24<00:56, 182.32patch/s]
31%|███ | 4608/14940 [00:25<00:56, 182.77patch/s]
31%|███ | 4627/14940 [00:25<00:56, 183.40patch/s]
31%|███ | 4646/14940 [00:25<00:55, 184.31patch/s]
31%|███ | 4665/14940 [00:25<00:55, 184.55patch/s]
31%|███▏ | 4684/14940 [00:25<00:55, 184.83patch/s]
31%|███▏ | 4703/14940 [00:25<00:55, 183.92patch/s]
32%|███▏ | 4722/14940 [00:25<00:55, 182.69patch/s]
32%|███▏ | 4741/14940 [00:25<00:56, 181.65patch/s]
32%|███▏ | 4760/14940 [00:25<00:55, 182.96patch/s]
32%|███▏ | 4779/14940 [00:25<00:55, 184.35patch/s]
32%|███▏ | 4798/14940 [00:26<00:54, 185.72patch/s]
32%|███▏ | 4817/14940 [00:26<00:54, 185.93patch/s]
32%|███▏ | 4836/14940 [00:26<00:54, 185.32patch/s]
32%|███▏ | 4855/14940 [00:26<00:55, 183.21patch/s]
33%|███▎ | 4874/14940 [00:26<00:54, 184.44patch/s]
33%|███▎ | 4893/14940 [00:26<00:54, 185.97patch/s]
33%|███▎ | 4912/14940 [00:26<00:53, 186.93patch/s]
33%|███▎ | 4931/14940 [00:26<00:53, 187.05patch/s]
33%|███▎ | 4950/14940 [00:26<00:53, 186.29patch/s]
33%|███▎ | 4969/14940 [00:26<00:53, 186.17patch/s]
33%|███▎ | 4988/14940 [00:27<00:53, 186.21patch/s]
34%|███▎ | 5007/14940 [00:27<00:53, 186.26patch/s]
34%|███▎ | 5026/14940 [00:27<00:53, 186.90patch/s]
34%|███▍ | 5045/14940 [00:27<00:52, 187.29patch/s]
34%|███▍ | 5064/14940 [00:27<00:52, 187.62patch/s]
34%|███▍ | 5083/14940 [00:27<00:52, 188.04patch/s]
34%|███▍ | 5102/14940 [00:27<00:52, 187.81patch/s]
34%|███▍ | 5121/14940 [00:27<00:52, 185.94patch/s]
34%|███▍ | 5140/14940 [00:27<00:52, 186.00patch/s]
35%|███▍ | 5160/14940 [00:27<00:52, 187.28patch/s]
35%|███▍ | 5179/14940 [00:28<00:52, 185.53patch/s]
35%|███▍ | 5198/14940 [00:28<00:52, 184.85patch/s]
35%|███▍ | 5217/14940 [00:28<00:52, 185.22patch/s]
35%|███▌ | 5236/14940 [00:28<00:52, 185.30patch/s]
35%|███▌ | 5255/14940 [00:28<00:52, 185.42patch/s]
35%|███▌ | 5274/14940 [00:28<00:52, 185.38patch/s]
35%|███▌ | 5293/14940 [00:28<00:51, 186.14patch/s]
36%|███▌ | 5312/14940 [00:28<00:51, 186.64patch/s]
36%|███▌ | 5331/14940 [00:28<00:51, 185.17patch/s]
36%|███▌ | 5350/14940 [00:29<00:51, 185.20patch/s]
36%|███▌ | 5369/14940 [00:29<00:51, 186.16patch/s]
36%|███▌ | 5389/14940 [00:29<00:50, 187.44patch/s]
36%|███▌ | 5408/14940 [00:29<00:50, 187.67patch/s]
36%|███▋ | 5427/14940 [00:29<00:50, 187.12patch/s]
36%|███▋ | 5446/14940 [00:29<00:50, 187.45patch/s]
37%|███▋ | 5465/14940 [00:29<00:50, 187.45patch/s]
37%|███▋ | 5484/14940 [00:29<00:50, 187.12patch/s]
37%|███▋ | 5503/14940 [00:29<00:50, 186.34patch/s]
37%|███▋ | 5522/14940 [00:29<00:50, 185.85patch/s]
37%|███▋ | 5542/14940 [00:30<00:50, 187.29patch/s]
37%|███▋ | 5561/14940 [00:30<00:50, 187.45patch/s]
37%|███▋ | 5580/14940 [00:30<00:50, 187.01patch/s]
37%|███▋ | 5599/14940 [00:30<00:49, 187.48patch/s]
38%|███▊ | 5618/14940 [00:30<00:49, 188.02patch/s]
38%|███▊ | 5638/14940 [00:30<00:49, 188.74patch/s]
38%|███▊ | 5657/14940 [00:30<00:49, 187.45patch/s]
38%|███▊ | 5676/14940 [00:30<00:49, 186.37patch/s]
38%|███▊ | 5695/14940 [00:30<00:49, 185.81patch/s]
38%|███▊ | 5714/14940 [00:30<00:49, 186.62patch/s]
38%|███▊ | 5734/14940 [00:31<00:49, 187.66patch/s]
39%|███▊ | 5753/14940 [00:31<00:48, 187.83patch/s]
39%|███▊ | 5772/14940 [00:31<00:48, 188.32patch/s]
39%|███▉ | 5792/14940 [00:31<00:48, 188.87patch/s]
39%|███▉ | 5811/14940 [00:31<00:48, 188.06patch/s]
39%|███▉ | 5830/14940 [00:31<00:48, 187.92patch/s]
39%|███▉ | 5849/14940 [00:31<00:48, 188.05patch/s]
39%|███▉ | 5868/14940 [00:31<00:48, 188.14patch/s]
39%|███▉ | 5887/14940 [00:31<00:48, 187.65patch/s]
40%|███▉ | 5906/14940 [00:31<00:48, 186.65patch/s]
40%|███▉ | 5925/14940 [00:32<00:48, 186.31patch/s]
40%|███▉ | 5944/14940 [00:32<00:48, 186.20patch/s]
40%|███▉ | 5963/14940 [00:32<00:48, 186.12patch/s]
40%|████ | 5982/14940 [00:32<00:48, 185.59patch/s]
40%|████ | 6001/14940 [00:32<00:48, 185.07patch/s]
40%|████ | 6020/14940 [00:32<00:48, 184.86patch/s]
40%|████ | 6039/14940 [00:32<00:48, 185.01patch/s]
41%|████ | 6058/14940 [00:32<00:47, 185.25patch/s]
41%|████ | 6077/14940 [00:32<00:47, 185.71patch/s]
41%|████ | 6096/14940 [00:32<00:47, 186.54patch/s]
41%|████ | 6115/14940 [00:33<00:47, 187.11patch/s]
41%|████ | 6135/14940 [00:33<00:46, 188.01patch/s]
41%|████ | 6154/14940 [00:33<00:46, 188.43patch/s]
41%|████▏ | 6173/14940 [00:33<00:46, 187.41patch/s]
41%|████▏ | 6192/14940 [00:33<00:46, 187.50patch/s]
42%|████▏ | 6211/14940 [00:33<00:46, 187.72patch/s]
42%|████▏ | 6230/14940 [00:33<00:46, 186.66patch/s]
42%|████▏ | 6249/14940 [00:33<00:46, 186.62patch/s]
42%|████▏ | 6268/14940 [00:33<00:46, 186.35patch/s]
42%|████▏ | 6287/14940 [00:34<00:46, 185.25patch/s]
42%|████▏ | 6306/14940 [00:34<00:46, 185.27patch/s]
42%|████▏ | 6325/14940 [00:34<00:46, 186.24patch/s]
42%|████▏ | 6344/14940 [00:34<00:46, 186.30patch/s]
43%|████▎ | 6363/14940 [00:34<00:46, 186.16patch/s]
43%|████▎ | 6382/14940 [00:34<00:45, 186.78patch/s]
43%|████▎ | 6401/14940 [00:34<00:45, 187.48patch/s]
43%|████▎ | 6421/14940 [00:34<00:45, 188.30patch/s]
43%|████▎ | 6440/14940 [00:34<00:45, 187.06patch/s]
43%|████▎ | 6459/14940 [00:34<00:45, 187.04patch/s]
43%|████▎ | 6479/14940 [00:35<00:45, 187.92patch/s]
44%|████▎ | 6499/14940 [00:35<00:44, 188.59patch/s]
44%|████▎ | 6518/14940 [00:35<00:44, 188.81patch/s]
44%|████▍ | 6537/14940 [00:35<00:44, 188.71patch/s]
44%|████▍ | 6556/14940 [00:35<00:44, 187.92patch/s]
44%|████▍ | 6575/14940 [00:35<00:44, 187.63patch/s]
44%|████▍ | 6595/14940 [00:35<00:44, 188.50patch/s]
44%|████▍ | 6614/14940 [00:35<00:44, 187.68patch/s]
44%|████▍ | 6633/14940 [00:35<00:44, 186.58patch/s]
45%|████▍ | 6652/14940 [00:35<00:44, 185.95patch/s]
45%|████▍ | 6671/14940 [00:36<00:44, 185.59patch/s]
45%|████▍ | 6690/14940 [00:36<00:44, 185.81patch/s]
45%|████▍ | 6709/14940 [00:36<00:44, 186.62patch/s]
45%|████▌ | 6728/14940 [00:36<00:43, 187.29patch/s]
45%|████▌ | 6747/14940 [00:36<00:43, 187.70patch/s]
45%|████▌ | 6766/14940 [00:36<00:43, 187.74patch/s]
45%|████▌ | 6785/14940 [00:36<00:43, 188.10patch/s]
46%|████▌ | 6804/14940 [00:36<00:43, 188.31patch/s]
46%|████▌ | 6823/14940 [00:36<00:42, 188.80patch/s]
46%|████▌ | 6843/14940 [00:36<00:42, 189.16patch/s]
46%|████▌ | 6862/14940 [00:37<00:42, 188.93patch/s]
46%|████▌ | 6881/14940 [00:37<00:42, 188.88patch/s]
46%|████▌ | 6900/14940 [00:37<00:42, 188.89patch/s]
46%|████▋ | 6919/14940 [00:37<00:42, 188.71patch/s]
46%|████▋ | 6938/14940 [00:37<00:42, 188.75patch/s]
47%|████▋ | 6957/14940 [00:37<00:42, 189.07patch/s]
47%|████▋ | 6976/14940 [00:37<00:42, 187.52patch/s]
47%|████▋ | 6995/14940 [00:37<00:42, 187.52patch/s]
47%|████▋ | 7015/14940 [00:37<00:42, 188.36patch/s]
47%|████▋ | 7034/14940 [00:37<00:42, 187.99patch/s]
47%|████▋ | 7053/14940 [00:38<00:42, 187.47patch/s]
47%|████▋ | 7072/14940 [00:38<00:42, 187.04patch/s]
47%|████▋ | 7091/14940 [00:38<00:41, 187.50patch/s]
48%|████▊ | 7111/14940 [00:38<00:41, 188.45patch/s]
48%|████▊ | 7131/14940 [00:38<00:41, 188.95patch/s]
48%|████▊ | 7150/14940 [00:38<00:41, 189.21patch/s]
48%|████▊ | 7170/14940 [00:38<00:41, 189.50patch/s]
48%|████▊ | 7189/14940 [00:38<00:41, 188.95patch/s]
48%|████▊ | 7208/14940 [00:38<00:40, 188.59patch/s]
48%|████▊ | 7227/14940 [00:39<00:40, 188.59patch/s]
49%|████▊ | 7247/14940 [00:39<00:40, 189.05patch/s]
49%|████▊ | 7266/14940 [00:39<00:40, 189.10patch/s]
49%|████▉ | 7285/14940 [00:39<00:40, 188.67patch/s]
49%|████▉ | 7304/14940 [00:39<00:40, 188.67patch/s]
49%|████▉ | 7323/14940 [00:39<00:40, 188.56patch/s]
49%|████▉ | 7343/14940 [00:39<00:40, 189.18patch/s]
49%|████▉ | 7362/14940 [00:39<00:40, 188.94patch/s]
49%|████▉ | 7381/14940 [00:39<00:40, 188.89patch/s]
50%|████▉ | 7401/14940 [00:39<00:39, 189.44patch/s]
50%|████▉ | 7420/14940 [00:40<00:39, 189.03patch/s]
50%|████▉ | 7439/14940 [00:40<00:39, 188.16patch/s]
50%|████▉ | 7458/14940 [00:40<00:39, 188.69patch/s]
50%|█████ | 7477/14940 [00:40<00:39, 188.90patch/s]
50%|█████ | 7496/14940 [00:40<00:39, 188.79patch/s]
50%|█████ | 7515/14940 [00:40<00:39, 188.91patch/s]
50%|█████ | 7535/14940 [00:40<00:39, 189.28patch/s]
51%|█████ | 7554/14940 [00:40<00:39, 189.12patch/s]
51%|█████ | 7573/14940 [00:40<00:39, 188.36patch/s]
51%|█████ | 7592/14940 [00:40<00:39, 187.70patch/s]
51%|█████ | 7611/14940 [00:41<00:39, 187.90patch/s]
51%|█████ | 7630/14940 [00:41<00:38, 188.22patch/s]
51%|█████ | 7649/14940 [00:41<00:38, 188.22patch/s]
51%|█████▏ | 7668/14940 [00:41<00:38, 187.98patch/s]
51%|█████▏ | 7687/14940 [00:41<00:38, 188.06patch/s]
52%|█████▏ | 7706/14940 [00:41<00:38, 187.39patch/s]
52%|█████▏ | 7725/14940 [00:41<00:38, 187.06patch/s]
52%|█████▏ | 7744/14940 [00:41<00:38, 186.99patch/s]
52%|█████▏ | 7763/14940 [00:41<00:38, 187.58patch/s]
52%|█████▏ | 7782/14940 [00:41<00:38, 187.37patch/s]
52%|█████▏ | 7801/14940 [00:42<00:38, 187.03patch/s]
52%|█████▏ | 7820/14940 [00:42<00:37, 187.40patch/s]
52%|█████▏ | 7839/14940 [00:42<00:37, 187.42patch/s]
53%|█████▎ | 7858/14940 [00:42<00:37, 187.07patch/s]
53%|█████▎ | 7877/14940 [00:42<00:37, 186.58patch/s]
53%|█████▎ | 7896/14940 [00:42<00:37, 185.81patch/s]
53%|█████▎ | 7916/14940 [00:42<00:37, 187.15patch/s]
53%|█████▎ | 7935/14940 [00:42<00:37, 187.65patch/s]
53%|█████▎ | 7954/14940 [00:42<00:37, 187.59patch/s]
53%|█████▎ | 7973/14940 [00:42<00:37, 186.41patch/s]
53%|█████▎ | 7992/14940 [00:43<00:37, 185.93patch/s]
54%|█████▎ | 8011/14940 [00:43<00:37, 185.94patch/s]
54%|█████▍ | 8031/14940 [00:43<00:36, 187.25patch/s]
54%|█████▍ | 8050/14940 [00:43<00:36, 187.88patch/s]
54%|█████▍ | 8069/14940 [00:43<00:36, 188.18patch/s]
54%|█████▍ | 8088/14940 [00:43<00:37, 185.13patch/s]
54%|█████▍ | 8107/14940 [00:43<00:37, 184.59patch/s]
54%|█████▍ | 8126/14940 [00:43<00:36, 185.07patch/s]
55%|█████▍ | 8145/14940 [00:43<00:36, 186.40patch/s]
55%|█████▍ | 8164/14940 [00:44<00:36, 186.90patch/s]
55%|█████▍ | 8183/14940 [00:44<00:36, 186.04patch/s]
55%|█████▍ | 8202/14940 [00:44<00:36, 185.36patch/s]
55%|█████▌ | 8221/14940 [00:44<00:36, 185.04patch/s]
55%|█████▌ | 8240/14940 [00:44<00:36, 185.37patch/s]
55%|█████▌ | 8259/14940 [00:44<00:36, 185.26patch/s]
55%|█████▌ | 8278/14940 [00:44<00:36, 184.83patch/s]
56%|█████▌ | 8297/14940 [00:44<00:35, 186.18patch/s]
56%|█████▌ | 8316/14940 [00:44<00:35, 186.92patch/s]
56%|█████▌ | 8335/14940 [00:44<00:35, 187.76patch/s]
56%|█████▌ | 8354/14940 [00:45<00:34, 188.38patch/s]
56%|█████▌ | 8373/14940 [00:45<00:34, 188.77patch/s]
56%|█████▌ | 8393/14940 [00:45<00:34, 189.32patch/s]
56%|█████▋ | 8412/14940 [00:45<00:34, 189.34patch/s]
56%|█████▋ | 8431/14940 [00:45<00:34, 189.02patch/s]
57%|█████▋ | 8450/14940 [00:45<00:34, 187.51patch/s]
57%|█████▋ | 8469/14940 [00:45<00:34, 186.95patch/s]
57%|█████▋ | 8488/14940 [00:45<00:34, 187.41patch/s]
57%|█████▋ | 8507/14940 [00:45<00:34, 187.83patch/s]
57%|█████▋ | 8526/14940 [00:45<00:34, 187.69patch/s]
57%|█████▋ | 8545/14940 [00:46<00:34, 187.28patch/s]
57%|█████▋ | 8564/14940 [00:46<00:34, 186.85patch/s]
57%|█████▋ | 8583/14940 [00:46<00:34, 186.31patch/s]
58%|█████▊ | 8602/14940 [00:46<00:34, 184.14patch/s]
58%|█████▊ | 8621/14940 [00:46<00:34, 184.20patch/s]
58%|█████▊ | 8640/14940 [00:46<00:34, 184.82patch/s]
58%|█████▊ | 8659/14940 [00:46<00:34, 183.74patch/s]
58%|█████▊ | 8678/14940 [00:46<00:34, 184.15patch/s]
58%|█████▊ | 8697/14940 [00:46<00:33, 185.72patch/s]
58%|█████▊ | 8716/14940 [00:46<00:33, 185.92patch/s]
58%|█████▊ | 8735/14940 [00:47<00:33, 185.61patch/s]
59%|█████▊ | 8754/14940 [00:47<00:33, 185.09patch/s]
59%|█████▊ | 8773/14940 [00:47<00:33, 184.93patch/s]
59%|█████▉ | 8792/14940 [00:47<00:33, 185.19patch/s]
59%|█████▉ | 8811/14940 [00:47<00:33, 185.36patch/s]
59%|█████▉ | 8830/14940 [00:47<00:32, 186.10patch/s]
59%|█████▉ | 8849/14940 [00:47<00:32, 186.50patch/s]
59%|█████▉ | 8868/14940 [00:47<00:32, 187.49patch/s]
59%|█████▉ | 8887/14940 [00:47<00:32, 187.29patch/s]
60%|█████▉ | 8906/14940 [00:48<00:32, 185.56patch/s]
60%|█████▉ | 8925/14940 [00:48<00:32, 183.98patch/s]
60%|█████▉ | 8944/14940 [00:48<00:32, 184.26patch/s]
60%|██████ | 8964/14940 [00:48<00:32, 186.06patch/s]
60%|██████ | 8983/14940 [00:48<00:31, 186.75patch/s]
60%|██████ | 9002/14940 [00:48<00:31, 187.34patch/s]
60%|██████ | 9021/14940 [00:48<00:31, 187.44patch/s]
61%|██████ | 9040/14940 [00:48<00:31, 186.83patch/s]
61%|██████ | 9060/14940 [00:48<00:31, 187.79patch/s]
61%|██████ | 9079/14940 [00:48<00:31, 187.15patch/s]
61%|██████ | 9098/14940 [00:49<00:31, 187.01patch/s]
61%|██████ | 9117/14940 [00:49<00:31, 187.45patch/s]
61%|██████ | 9136/14940 [00:49<00:30, 187.84patch/s]
61%|██████▏ | 9155/14940 [00:49<00:30, 187.44patch/s]
61%|██████▏ | 9174/14940 [00:49<00:31, 184.51patch/s]
62%|██████▏ | 9193/14940 [00:49<00:31, 184.11patch/s]
62%|██████▏ | 9212/14940 [00:49<00:31, 183.82patch/s]
62%|██████▏ | 9231/14940 [00:49<00:30, 184.22patch/s]
62%|██████▏ | 9250/14940 [00:49<00:30, 185.07patch/s]
62%|██████▏ | 9269/14940 [00:49<00:30, 185.30patch/s]
62%|██████▏ | 9288/14940 [00:50<00:30, 185.31patch/s]
62%|██████▏ | 9307/14940 [00:50<00:30, 184.94patch/s]
62%|██████▏ | 9326/14940 [00:50<00:30, 183.88patch/s]
63%|██████▎ | 9345/14940 [00:50<00:30, 185.17patch/s]
63%|██████▎ | 9364/14940 [00:50<00:29, 186.38patch/s]
63%|██████▎ | 9383/14940 [00:50<00:29, 186.00patch/s]
63%|██████▎ | 9402/14940 [00:50<00:29, 185.75patch/s]
63%|██████▎ | 9421/14940 [00:50<00:29, 185.76patch/s]
63%|██████▎ | 9440/14940 [00:50<00:29, 185.66patch/s]
63%|██████▎ | 9459/14940 [00:50<00:29, 186.29patch/s]
63%|██████▎ | 9478/14940 [00:51<00:29, 186.00patch/s]
64%|██████▎ | 9497/14940 [00:51<00:29, 183.29patch/s]
64%|██████▎ | 9516/14940 [00:51<00:29, 182.19patch/s]
64%|██████▍ | 9535/14940 [00:51<00:29, 184.01patch/s]
64%|██████▍ | 9554/14940 [00:51<00:29, 183.74patch/s]
64%|██████▍ | 9573/14940 [00:51<00:29, 183.15patch/s]
64%|██████▍ | 9592/14940 [00:51<00:29, 183.78patch/s]
64%|██████▍ | 9611/14940 [00:51<00:28, 184.39patch/s]
64%|██████▍ | 9630/14940 [00:51<00:28, 184.88patch/s]
65%|██████▍ | 9649/14940 [00:52<00:28, 185.94patch/s]
65%|██████▍ | 9668/14940 [00:52<00:28, 186.09patch/s]
65%|██████▍ | 9687/14940 [00:52<00:28, 185.41patch/s]
65%|██████▍ | 9706/14940 [00:52<00:28, 182.90patch/s]
65%|██████▌ | 9725/14940 [00:52<00:28, 180.93patch/s]
65%|██████▌ | 9744/14940 [00:52<00:28, 180.37patch/s]
65%|██████▌ | 9763/14940 [00:52<00:28, 181.76patch/s]
65%|██████▌ | 9782/14940 [00:52<00:28, 183.40patch/s]
66%|██████▌ | 9801/14940 [00:52<00:27, 184.17patch/s]
66%|██████▌ | 9820/14940 [00:52<00:27, 184.27patch/s]
66%|██████▌ | 9839/14940 [00:53<00:27, 184.13patch/s]
66%|██████▌ | 9858/14940 [00:53<00:27, 185.29patch/s]
66%|██████▌ | 9877/14940 [00:53<00:27, 186.51patch/s]
66%|██████▌ | 9897/14940 [00:53<00:26, 187.69patch/s]
66%|██████▋ | 9917/14940 [00:53<00:26, 188.41patch/s]
67%|██████▋ | 9936/14940 [00:53<00:26, 187.46patch/s]
67%|██████▋ | 9955/14940 [00:53<00:27, 184.03patch/s]
67%|██████▋ | 9974/14940 [00:53<00:27, 182.88patch/s]
67%|██████▋ | 9993/14940 [00:53<00:26, 183.75patch/s]
67%|██████▋ | 10012/14940 [00:53<00:26, 184.29patch/s]
67%|██████▋ | 10031/14940 [00:54<00:26, 184.75patch/s]
67%|██████▋ | 10050/14940 [00:54<00:26, 185.01patch/s]
67%|██████▋ | 10069/14940 [00:54<00:26, 185.06patch/s]
68%|██████▊ | 10088/14940 [00:54<00:26, 184.29patch/s]
68%|██████▊ | 10107/14940 [00:54<00:26, 182.61patch/s]
68%|██████▊ | 10126/14940 [00:54<00:26, 180.81patch/s]
68%|██████▊ | 10145/14940 [00:54<00:26, 180.16patch/s]
68%|██████▊ | 10164/14940 [00:54<00:26, 181.11patch/s]
68%|██████▊ | 10183/14940 [00:54<00:25, 183.01patch/s]
68%|██████▊ | 10202/14940 [00:55<00:25, 184.42patch/s]
68%|██████▊ | 10221/14940 [00:55<00:25, 184.81patch/s]
69%|██████▊ | 10240/14940 [00:55<00:25, 183.46patch/s]
69%|██████▊ | 10259/14940 [00:55<00:25, 181.10patch/s]
69%|██████▉ | 10278/14940 [00:55<00:25, 179.57patch/s]
69%|██████▉ | 10296/14940 [00:55<00:25, 179.13patch/s]
69%|██████▉ | 10315/14940 [00:55<00:25, 179.95patch/s]
69%|██████▉ | 10333/14940 [00:55<00:25, 179.52patch/s]
69%|██████▉ | 10351/14940 [00:55<00:25, 179.28patch/s]
69%|██████▉ | 10370/14940 [00:55<00:25, 181.21patch/s]
70%|██████▉ | 10389/14940 [00:56<00:24, 182.32patch/s]
70%|██████▉ | 10408/14940 [00:56<00:24, 182.81patch/s]
70%|██████▉ | 10427/14940 [00:56<00:24, 183.66patch/s]
70%|██████▉ | 10446/14940 [00:56<00:24, 184.60patch/s]
70%|███████ | 10465/14940 [00:56<00:24, 186.09patch/s]
70%|███████ | 10484/14940 [00:56<00:24, 184.14patch/s]
70%|███████ | 10503/14940 [00:56<00:24, 181.86patch/s]
70%|███████ | 10522/14940 [00:56<00:24, 180.85patch/s]
71%|███████ | 10541/14940 [00:56<00:24, 181.00patch/s]
71%|███████ | 10560/14940 [00:56<00:24, 182.43patch/s]
71%|███████ | 10579/14940 [00:57<00:23, 182.85patch/s]
71%|███████ | 10598/14940 [00:57<00:23, 182.42patch/s]
71%|███████ | 10617/14940 [00:57<00:23, 181.34patch/s]
71%|███████ | 10636/14940 [00:57<00:23, 181.72patch/s]
71%|███████▏ | 10655/14940 [00:57<00:23, 182.01patch/s]
71%|███████▏ | 10674/14940 [00:57<00:23, 180.79patch/s]
72%|███████▏ | 10693/14940 [00:57<00:23, 180.76patch/s]
72%|███████▏ | 10712/14940 [00:57<00:23, 181.08patch/s]
72%|███████▏ | 10731/14940 [00:57<00:23, 179.54patch/s]
72%|███████▏ | 10749/14940 [00:58<00:23, 178.55patch/s]
72%|███████▏ | 10767/14940 [00:58<00:23, 177.96patch/s]
72%|███████▏ | 10785/14940 [00:58<00:23, 177.40patch/s]
72%|███████▏ | 10803/14940 [00:58<00:23, 176.54patch/s]
72%|███████▏ | 10822/14940 [00:58<00:23, 177.97patch/s]
73%|███████▎ | 10841/14940 [00:58<00:22, 179.63patch/s]
73%|███████▎ | 10860/14940 [00:58<00:22, 181.57patch/s]
73%|███████▎ | 10879/14940 [00:58<00:22, 182.89patch/s]
73%|███████▎ | 10898/14940 [00:58<00:22, 183.61patch/s]
73%|███████▎ | 10917/14940 [00:58<00:21, 184.25patch/s]
73%|███████▎ | 10936/14940 [00:59<00:21, 184.62patch/s]
73%|███████▎ | 10955/14940 [00:59<00:21, 184.82patch/s]
73%|███████▎ | 10974/14940 [00:59<00:21, 185.05patch/s]
74%|███████▎ | 10993/14940 [00:59<00:21, 185.23patch/s]
74%|███████▎ | 11012/14940 [00:59<00:21, 185.10patch/s]
74%|███████▍ | 11031/14940 [00:59<00:21, 182.10patch/s]
74%|███████▍ | 11050/14940 [00:59<00:21, 180.67patch/s]
74%|███████▍ | 11069/14940 [00:59<00:21, 180.10patch/s]
74%|███████▍ | 11088/14940 [00:59<00:21, 182.38patch/s]
74%|███████▍ | 11107/14940 [00:59<00:20, 184.06patch/s]
74%|███████▍ | 11126/14940 [01:00<00:20, 185.37patch/s]
75%|███████▍ | 11145/14940 [01:00<00:20, 184.67patch/s]
75%|███████▍ | 11164/14940 [01:00<00:20, 183.78patch/s]
75%|███████▍ | 11183/14940 [01:00<00:20, 183.81patch/s]
75%|███████▍ | 11202/14940 [01:00<00:20, 185.10patch/s]
75%|███████▌ | 11221/14940 [01:00<00:19, 186.39patch/s]
75%|███████▌ | 11240/14940 [01:00<00:19, 186.35patch/s]
75%|███████▌ | 11259/14940 [01:00<00:19, 185.87patch/s]
75%|███████▌ | 11278/14940 [01:00<00:19, 185.79patch/s]
76%|███████▌ | 11297/14940 [01:01<00:19, 185.22patch/s]
76%|███████▌ | 11316/14940 [01:01<00:19, 184.66patch/s]
76%|███████▌ | 11335/14940 [01:01<00:19, 184.48patch/s]
76%|███████▌ | 11354/14940 [01:01<00:19, 184.79patch/s]
76%|███████▌ | 11373/14940 [01:01<00:19, 184.76patch/s]
76%|███████▋ | 11392/14940 [01:01<00:19, 182.97patch/s]
76%|███████▋ | 11411/14940 [01:01<00:19, 182.88patch/s]
77%|███████▋ | 11430/14940 [01:01<00:19, 183.70patch/s]
77%|███████▋ | 11449/14940 [01:01<00:18, 184.31patch/s]
77%|███████▋ | 11468/14940 [01:01<00:18, 184.08patch/s]
77%|███████▋ | 11487/14940 [01:02<00:18, 183.25patch/s]
77%|███████▋ | 11506/14940 [01:02<00:18, 182.68patch/s]
77%|███████▋ | 11525/14940 [01:02<00:18, 181.74patch/s]
77%|███████▋ | 11544/14940 [01:02<00:18, 180.02patch/s]
77%|███████▋ | 11563/14940 [01:02<00:18, 179.93patch/s]
78%|███████▊ | 11582/14940 [01:02<00:18, 180.17patch/s]
78%|███████▊ | 11601/14940 [01:02<00:18, 179.82patch/s]
78%|███████▊ | 11620/14940 [01:02<00:18, 180.50patch/s]
78%|███████▊ | 11639/14940 [01:02<00:18, 181.77patch/s]
78%|███████▊ | 11658/14940 [01:03<00:17, 182.90patch/s]
78%|███████▊ | 11677/14940 [01:03<00:17, 183.80patch/s]
78%|███████▊ | 11696/14940 [01:03<00:17, 184.45patch/s]
78%|███████▊ | 11715/14940 [01:03<00:17, 182.94patch/s]
79%|███████▊ | 11734/14940 [01:03<00:17, 182.05patch/s]
79%|███████▊ | 11753/14940 [01:03<00:17, 183.15patch/s]
79%|███████▉ | 11772/14940 [01:03<00:17, 183.93patch/s]
79%|███████▉ | 11791/14940 [01:03<00:17, 184.58patch/s]
79%|███████▉ | 11810/14940 [01:03<00:16, 184.91patch/s]
79%|███████▉ | 11829/14940 [01:03<00:16, 184.23patch/s]
79%|███████▉ | 11848/14940 [01:04<00:16, 183.32patch/s]
79%|███████▉ | 11867/14940 [01:04<00:16, 184.64patch/s]
80%|███████▉ | 11886/14940 [01:04<00:16, 185.50patch/s]
80%|███████▉ | 11905/14940 [01:04<00:16, 185.44patch/s]
80%|███████▉ | 11924/14940 [01:04<00:16, 185.48patch/s]
80%|███████▉ | 11943/14940 [01:04<00:16, 185.72patch/s]
80%|████████ | 11962/14940 [01:04<00:15, 186.47patch/s]
80%|████████ | 11981/14940 [01:04<00:15, 186.23patch/s]
80%|████████ | 12000/14940 [01:04<00:15, 185.28patch/s]
80%|████████ | 12019/14940 [01:04<00:15, 186.19patch/s]
81%|████████ | 12038/14940 [01:05<00:15, 186.34patch/s]
81%|████████ | 12057/14940 [01:05<00:15, 186.26patch/s]
81%|████████ | 12076/14940 [01:05<00:15, 186.14patch/s]
81%|████████ | 12095/14940 [01:05<00:15, 185.70patch/s]
81%|████████ | 12114/14940 [01:05<00:15, 185.03patch/s]
81%|████████ | 12133/14940 [01:05<00:15, 184.97patch/s]
81%|████████▏ | 12152/14940 [01:05<00:15, 184.41patch/s]
81%|████████▏ | 12171/14940 [01:05<00:15, 181.79patch/s]
82%|████████▏ | 12190/14940 [01:05<00:15, 180.04patch/s]
82%|████████▏ | 12209/14940 [01:05<00:15, 180.34patch/s]
82%|████████▏ | 12228/14940 [01:06<00:14, 181.94patch/s]
82%|████████▏ | 12247/14940 [01:06<00:14, 183.45patch/s]
82%|████████▏ | 12266/14940 [01:06<00:14, 185.01patch/s]
82%|████████▏ | 12285/14940 [01:06<00:14, 184.92patch/s]
82%|████████▏ | 12304/14940 [01:06<00:14, 184.70patch/s]
82%|████████▏ | 12323/14940 [01:06<00:14, 186.01patch/s]
83%|████████▎ | 12342/14940 [01:06<00:13, 185.91patch/s]
83%|████████▎ | 12361/14940 [01:06<00:13, 185.27patch/s]
83%|████████▎ | 12380/14940 [01:06<00:13, 183.83patch/s]
83%|████████▎ | 12399/14940 [01:07<00:13, 184.04patch/s]
83%|████████▎ | 12418/14940 [01:07<00:13, 184.72patch/s]
83%|████████▎ | 12437/14940 [01:07<00:13, 183.83patch/s]
83%|████████▎ | 12456/14940 [01:07<00:13, 183.61patch/s]
84%|████████▎ | 12475/14940 [01:07<00:13, 184.42patch/s]
84%|████████▎ | 12494/14940 [01:07<00:13, 184.87patch/s]
84%|████████▍ | 12513/14940 [01:07<00:13, 185.14patch/s]
84%|████████▍ | 12532/14940 [01:07<00:12, 185.50patch/s]
84%|████████▍ | 12551/14940 [01:07<00:12, 184.91patch/s]
84%|████████▍ | 12570/14940 [01:07<00:12, 183.92patch/s]
84%|████████▍ | 12589/14940 [01:08<00:12, 185.66patch/s]
84%|████████▍ | 12608/14940 [01:08<00:12, 186.62patch/s]
85%|████████▍ | 12627/14940 [01:08<00:12, 186.90patch/s]
85%|████████▍ | 12647/14940 [01:08<00:12, 187.88patch/s]
85%|████████▍ | 12666/14940 [01:08<00:12, 188.50patch/s]
85%|████████▍ | 12685/14940 [01:08<00:11, 188.36patch/s]
85%|████████▌ | 12704/14940 [01:08<00:11, 187.23patch/s]
85%|████████▌ | 12723/14940 [01:08<00:11, 186.71patch/s]
85%|████████▌ | 12742/14940 [01:08<00:11, 186.08patch/s]
85%|████████▌ | 12761/14940 [01:08<00:11, 185.14patch/s]
86%|████████▌ | 12780/14940 [01:09<00:11, 184.84patch/s]
86%|████████▌ | 12799/14940 [01:09<00:11, 184.93patch/s]
86%|████████▌ | 12818/14940 [01:09<00:11, 185.08patch/s]
86%|████████▌ | 12837/14940 [01:09<00:11, 184.82patch/s]
86%|████████▌ | 12856/14940 [01:09<00:11, 184.54patch/s]
86%|████████▌ | 12875/14940 [01:09<00:11, 184.46patch/s]
86%|████████▋ | 12894/14940 [01:09<00:11, 184.83patch/s]
86%|████████▋ | 12913/14940 [01:09<00:10, 185.16patch/s]
87%|████████▋ | 12932/14940 [01:09<00:10, 185.53patch/s]
87%|████████▋ | 12951/14940 [01:09<00:10, 185.53patch/s]
87%|████████▋ | 12970/14940 [01:10<00:10, 185.59patch/s]
87%|████████▋ | 12989/14940 [01:10<00:10, 185.53patch/s]
87%|████████▋ | 13008/14940 [01:10<00:10, 186.39patch/s]
87%|████████▋ | 13027/14940 [01:10<00:10, 187.10patch/s]
87%|████████▋ | 13047/14940 [01:10<00:10, 188.09patch/s]
87%|████████▋ | 13066/14940 [01:10<00:09, 188.27patch/s]
88%|████████▊ | 13085/14940 [01:10<00:09, 188.22patch/s]
88%|████████▊ | 13104/14940 [01:10<00:09, 188.24patch/s]
88%|████████▊ | 13123/14940 [01:10<00:09, 188.44patch/s]
88%|████████▊ | 13142/14940 [01:11<00:09, 187.72patch/s]
88%|████████▊ | 13162/14940 [01:11<00:09, 188.48patch/s]
88%|████████▊ | 13181/14940 [01:11<00:09, 188.51patch/s]
88%|████████▊ | 13200/14940 [01:11<00:09, 188.25patch/s]
88%|████████▊ | 13219/14940 [01:11<00:09, 187.02patch/s]
89%|████████▊ | 13238/14940 [01:11<00:09, 186.10patch/s]
89%|████████▊ | 13257/14940 [01:11<00:09, 184.67patch/s]
89%|████████▉ | 13276/14940 [01:11<00:09, 182.11patch/s]
89%|████████▉ | 13295/14940 [01:11<00:09, 180.93patch/s]
89%|████████▉ | 13314/14940 [01:11<00:08, 181.88patch/s]
89%|████████▉ | 13333/14940 [01:12<00:08, 183.68patch/s]
89%|████████▉ | 13352/14940 [01:12<00:08, 185.43patch/s]
89%|████████▉ | 13371/14940 [01:12<00:08, 186.38patch/s]
90%|████████▉ | 13390/14940 [01:12<00:08, 186.53patch/s]
90%|████████▉ | 13409/14940 [01:12<00:08, 186.36patch/s]
90%|████████▉ | 13428/14940 [01:12<00:08, 185.69patch/s]
90%|█████████ | 13447/14940 [01:12<00:08, 185.38patch/s]
90%|█████████ | 13466/14940 [01:12<00:07, 185.70patch/s]
90%|█████████ | 13485/14940 [01:12<00:07, 186.75patch/s]
90%|█████████ | 13505/14940 [01:12<00:07, 187.89patch/s]
91%|█████████ | 13524/14940 [01:13<00:07, 188.36patch/s]
91%|█████████ | 13543/14940 [01:13<00:07, 187.95patch/s]
91%|█████████ | 13562/14940 [01:13<00:07, 187.08patch/s]
91%|█████████ | 13581/14940 [01:13<00:07, 183.76patch/s]
91%|█████████ | 13600/14940 [01:13<00:07, 182.71patch/s]
91%|█████████ | 13619/14940 [01:13<00:07, 183.08patch/s]
91%|█████████▏| 13638/14940 [01:13<00:07, 185.01patch/s]
91%|█████████▏| 13657/14940 [01:13<00:06, 185.81patch/s]
92%|█████████▏| 13676/14940 [01:13<00:06, 185.33patch/s]
92%|█████████▏| 13695/14940 [01:13<00:06, 183.99patch/s]
92%|█████████▏| 13714/14940 [01:14<00:06, 183.50patch/s]
92%|█████████▏| 13733/14940 [01:14<00:06, 184.20patch/s]
92%|█████████▏| 13752/14940 [01:14<00:06, 185.62patch/s]
92%|█████████▏| 13772/14940 [01:14<00:06, 187.05patch/s]
92%|█████████▏| 13791/14940 [01:14<00:06, 187.64patch/s]
92%|█████████▏| 13810/14940 [01:14<00:06, 188.06patch/s]
93%|█████████▎| 13830/14940 [01:14<00:05, 188.77patch/s]
93%|█████████▎| 13849/14940 [01:14<00:05, 188.82patch/s]
93%|█████████▎| 13868/14940 [01:14<00:05, 187.87patch/s]
93%|█████████▎| 13887/14940 [01:15<00:05, 186.45patch/s]
93%|█████████▎| 13906/14940 [01:15<00:05, 186.76patch/s]
93%|█████████▎| 13925/14940 [01:15<00:05, 186.97patch/s]
93%|█████████▎| 13944/14940 [01:15<00:05, 186.80patch/s]
93%|█████████▎| 13963/14940 [01:15<00:05, 187.14patch/s]
94%|█████████▎| 13982/14940 [01:15<00:05, 187.77patch/s]
94%|█████████▎| 14001/14940 [01:15<00:04, 188.38patch/s]
94%|█████████▍| 14020/14940 [01:15<00:04, 188.77patch/s]
94%|█████████▍| 14039/14940 [01:15<00:04, 188.77patch/s]
94%|█████████▍| 14058/14940 [01:15<00:04, 188.65patch/s]
94%|█████████▍| 14077/14940 [01:16<00:04, 188.76patch/s]
94%|█████████▍| 14096/14940 [01:16<00:04, 189.01patch/s]
94%|█████████▍| 14116/14940 [01:16<00:04, 189.40patch/s]
95%|█████████▍| 14135/14940 [01:16<00:04, 189.21patch/s]
95%|█████████▍| 14154/14940 [01:16<00:04, 187.93patch/s]
95%|█████████▍| 14173/14940 [01:16<00:04, 187.44patch/s]
95%|█████████▍| 14192/14940 [01:16<00:04, 186.98patch/s]
95%|█████████▌| 14212/14940 [01:16<00:03, 188.07patch/s]
95%|█████████▌| 14231/14940 [01:16<00:03, 188.52patch/s]
95%|█████████▌| 14250/14940 [01:16<00:03, 188.45patch/s]
96%|█████████▌| 14269/14940 [01:17<00:03, 186.77patch/s]
96%|█████████▌| 14288/14940 [01:17<00:03, 186.62patch/s]
96%|█████████▌| 14307/14940 [01:17<00:03, 186.41patch/s]
96%|█████████▌| 14327/14940 [01:17<00:03, 187.53patch/s]
96%|█████████▌| 14347/14940 [01:17<00:03, 188.39patch/s]
96%|█████████▌| 14367/14940 [01:17<00:03, 188.92patch/s]
96%|█████████▋| 14386/14940 [01:17<00:02, 188.85patch/s]
96%|█████████▋| 14406/14940 [01:17<00:02, 189.26patch/s]
97%|█████████▋| 14426/14940 [01:17<00:02, 189.70patch/s]
97%|█████████▋| 14445/14940 [01:17<00:02, 189.57patch/s]
97%|█████████▋| 14464/14940 [01:18<00:02, 188.77patch/s]
97%|█████████▋| 14483/14940 [01:18<00:02, 188.04patch/s]
97%|█████████▋| 14502/14940 [01:18<00:02, 188.17patch/s]
97%|█████████▋| 14522/14940 [01:18<00:02, 188.73patch/s]
97%|█████████▋| 14541/14940 [01:18<00:02, 188.70patch/s]
97%|█████████▋| 14560/14940 [01:18<00:02, 188.67patch/s]
98%|█████████▊| 14579/14940 [01:18<00:01, 188.86patch/s]
98%|█████████▊| 14598/14940 [01:18<00:01, 188.28patch/s]
98%|█████████▊| 14617/14940 [01:18<00:01, 188.31patch/s]
98%|█████████▊| 14636/14940 [01:18<00:01, 188.40patch/s]
98%|█████████▊| 14655/14940 [01:19<00:01, 188.43patch/s]
98%|█████████▊| 14674/14940 [01:19<00:01, 188.17patch/s]
98%|█████████▊| 14693/14940 [01:19<00:01, 188.21patch/s]
98%|█████████▊| 14712/14940 [01:19<00:01, 188.45patch/s]
99%|█████████▊| 14732/14940 [01:19<00:01, 189.06patch/s]
99%|█████████▊| 14751/14940 [01:19<00:01, 188.96patch/s]
99%|█████████▉| 14770/14940 [01:19<00:00, 189.09patch/s]
99%|█████████▉| 14790/14940 [01:19<00:00, 189.51patch/s]
99%|█████████▉| 14809/14940 [01:19<00:00, 187.82patch/s]
99%|█████████▉| 14828/14940 [01:20<00:00, 187.27patch/s]
99%|█████████▉| 14847/14940 [01:20<00:00, 187.61patch/s]
100%|█████████▉| 14866/14940 [01:20<00:00, 187.21patch/s]
100%|█████████▉| 14885/14940 [01:20<00:00, 187.21patch/s]
100%|█████████▉| 14904/14940 [01:20<00:00, 187.47patch/s]
100%|█████████▉| 14923/14940 [01:20<00:00, 186.27patch/s]
100%|██████████| 14940/14940 [01:20<00:00, 185.32patch/s]
True
<mne.viz._brain._brain.Brain object at 0x7f11e5ada630>
Plot the RSA timecourse at the peak vertex
plt.figure()
plt.plot(rsa_vals.times, rsa_vals.data[peak_vertex])
plt.xlabel("Time (s)")
plt.ylabel("Kendall-Tau (alpha)")
plt.title(f"RSA values at vert {peak_vertex}")

Text(0.5, 1.0, 'RSA values at vert 127')
Total running time of the script: (1 minutes 33.693 seconds)