mne.decoding.SlidingEstimator¶
- 
class mne.decoding.SlidingEstimator(base_estimator, scoring=None, n_jobs=1, verbose=None)[source]¶
- Search Light. - Fit, predict and score a series of models to each subset of the dataset along the last dimension. Each entry in the last dimension is referred to as a task. - Parameters
- base_estimatorobject
- The base estimator to iteratively fit on a subset of the dataset. 
- scoringcallable(),str, defaultNone
- Score function (or loss function) with signature - score_func(y, y_pred, **kwargs). Note that the predict_method is automatically identified if scoring is a string (e.g. scoring=”roc_auc” calls predict_proba) but is not automatically set if scoring is a callable (e.g. scoring=sklearn.metrics.roc_auc_score).
- n_jobsint
- The number of jobs to run in parallel (default 1). Requires the joblib package. The number of jobs to run in parallel for both - fitand- predict. If -1, then the number of jobs is set to the number of cores.
- verbosebool, str,int, orNone
- If not None, override default verbose level (see - mne.verbose()and Logging documentation for more). If used, it should be passed as a keyword-argument only.
 
- Attributes
- estimators_array_like, shape (n_tasks,)
- List of fitted scikit-learn estimators (one per task). 
 
 - Methods - __hash__(/)- Return hash(self). - Estimate distances of each data slice to the hyperplanes. - fit(X, y, **fit_params)- Fit a series of independent estimators to the dataset. - fit_transform(X, y, **fit_params)- Fit and transform a series of independent estimators to the dataset. - get_params([deep])- Get parameters for this estimator. - predict(X)- Predict each data slice/task with a series of independent estimators. - Predict each data slice with a series of independent estimators. - score(X, y)- Score each estimator on each task. - set_params(**params)- Set the parameters of this estimator. - transform(X)- Transform each data slice/task with a series of independent estimators. - 
decision_function(X)[source]¶
- Estimate distances of each data slice to the hyperplanes. - Parameters
- Xarray, shape (n_samples, nd_features, n_tasks)
- The input samples. For each data slice, the corresponding estimator outputs the distance to the hyperplane, e.g.: - [estimators[ii].decision_function(X[..., ii]) for ii in range(n_estimators)]. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators).
 
- X
- Returns
- y_predarray, shape (n_samples, n_estimators, n_classes * (n_classes-1) // 2)
- Predicted distances for each estimator/data slice. 
 
- y_pred
 - Notes - This requires base_estimator to have a - decision_functionmethod.
 - 
fit(X, y, **fit_params)[source]¶
- Fit a series of independent estimators to the dataset. - Parameters
- Xarray, shape (n_samples, nd_features, n_tasks)
- The training input samples. For each data slice, a clone estimator is fitted independently. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks). 
- yarray, shape (n_samples,) | (n_samples, n_targets)
- The target values. 
- **fit_paramsdictofstr-> object
- Parameters to pass to the fit method of the estimator. 
 
- X
- Returns
- selfobject
- Return self. 
 
 - Examples using - fit:
 - 
fit_transform(X, y, **fit_params)[source]¶
- Fit and transform a series of independent estimators to the dataset. - Parameters
- Xarray, shape (n_samples, nd_features, n_tasks)
- The training input samples. For each task, a clone estimator is fitted independently. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators) 
- yarray, shape (n_samples,) | (n_samples, n_targets)
- The target values. 
- **fit_paramsdictofstr-> object
- Parameters to pass to the fit method of the estimator. 
 
- X
- Returns
- y_predarray, shape (n_samples, n_tasks) | (n_samples, n_tasks, n_targets)
- The predicted values for each estimator. 
 
- y_pred
 
 - 
predict(X)[source]¶
- Predict each data slice/task with a series of independent estimators. - The number of tasks in X should match the number of tasks/estimators given at fit time. - Parameters
- Xarray, shape (n_samples, nd_features, n_tasks)
- The input samples. For each data slice, the corresponding estimator makes the sample predictions, e.g.: - [estimators[ii].predict(X[..., ii]) for ii in range(n_estimators)]. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks).
 
- X
- Returns
- y_predarray, shape (n_samples, n_estimators) | (n_samples, n_tasks, n_targets)
- Predicted values for each estimator/data slice. 
 
- y_pred
 
 - 
predict_proba(X)[source]¶
- Predict each data slice with a series of independent estimators. - The number of tasks in X should match the number of tasks/estimators given at fit time. - Parameters
- Xarray, shape (n_samples, nd_features, n_tasks)
- The input samples. For each data slice, the corresponding estimator makes the sample probabilistic predictions, e.g.: - [estimators[ii].predict_proba(X[..., ii]) for ii in range(n_estimators)]. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks).
 
- X
- Returns
- y_predarray, shape (n_samples, n_tasks, n_classes)
- Predicted probabilities for each estimator/data slice/task. 
 
- y_pred
 
 - 
score(X, y)[source]¶
- Score each estimator on each task. - The number of tasks in X should match the number of tasks/estimators given at fit time, i.e. we need - X.shape[-1] == len(self.estimators_).- Parameters
- Xarray, shape (n_samples, nd_features, n_tasks)
- The input samples. For each data slice, the corresponding estimator scores the prediction, e.g.: - [estimators[ii].score(X[..., ii], y) for ii in range(n_estimators)]. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks).
- yarray, shape (n_samples,) | (n_samples, n_targets)
- The target values. 
 
- X
- Returns
- scorearray, shape (n_samples, n_estimators)
- Score for each estimator/task. 
 
- score
 - Examples using - score:
 - 
set_params(**params)[source]¶
- Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object. Returns ——- self
 - 
transform(X)[source]¶
- Transform each data slice/task with a series of independent estimators. - The number of tasks in X should match the number of tasks/estimators given at fit time. - Parameters
- Xarray, shape (n_samples, nd_features, n_tasks)
- The input samples. For each data slice/task, the corresponding estimator makes a transformation of the data, e.g. - [estimators[ii].transform(X[..., ii]) for ii in range(n_estimators)]. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks).
 
- X
- Returns
- Xtarray, shape (n_samples, n_estimators)
- The transformed values generated by each estimator. 
 
- Xt
 
 
 
 
