Compute envelope correlations in volume source space#

Compute envelope correlations of orthogonalized activity [1][2] in source space using resting state CTF data in a volume source space.

# Authors: Eric Larson <larson.eric.d@gmail.com>
#          Sheraz Khan <sheraz@khansheraz.com>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD (3-clause)

import os.path as op

import mne
from mne.beamformer import apply_lcmv_epochs, make_lcmv
from mne.preprocessing import compute_proj_ecg, compute_proj_eog

import mne_connectivity
from mne_connectivity import envelope_correlation

data_path = mne.datasets.brainstorm.bst_resting.data_path()
subjects_dir = op.join(data_path, "subjects")
subject = "bst_resting"
trans = op.join(data_path, "MEG", "bst_resting", "bst_resting-trans.fif")
bem = op.join(subjects_dir, subject, "bem", subject + "-5120-bem-sol.fif")
raw_fname = op.join(
    data_path, "MEG", "bst_resting", "subj002_spontaneous_20111102_01_AUX.ds"
)
crop_to = 60.0

Here we do some things in the name of speed, such as crop (which will hurt SNR) and downsample. Then we compute SSP projectors and apply them.

raw = mne.io.read_raw_ctf(raw_fname, verbose="error")
raw.crop(0, crop_to).pick_types(meg=True, eeg=False).load_data().resample(80)
raw.apply_gradient_compensation(3)
projs_ecg, _ = compute_proj_ecg(raw, n_grad=1, n_mag=2)
projs_eog, _ = compute_proj_eog(raw, n_grad=1, n_mag=2, ch_name="MLT31-4407")
raw.add_proj(projs_ecg + projs_eog)
raw.apply_proj()
cov = mne.compute_raw_covariance(raw)  # compute before band-pass of interest
NOTE: pick_types() is a legacy function. New code should use inst.pick(...).
Reading 0 ... 144000  =      0.000 ...    60.000 secs...
Including 0 SSP projectors from raw file
Running ECG SSP computation
Reconstructing ECG signal from Magnetometers
Setting up band-pass filter from 5 - 35 Hz

FIR filter parameters
---------------------
Designing a two-pass forward and reverse, zero-phase, non-causal bandpass filter:
- Windowed frequency-domain design (firwin2) method
- Hann window
- Lower passband edge: 5.00
- Lower transition bandwidth: 0.50 Hz (-12 dB cutoff frequency: 4.75 Hz)
- Upper passband edge: 35.00 Hz
- Upper transition bandwidth: 0.50 Hz (-12 dB cutoff frequency: 35.25 Hz)
- Filter length: 800 samples (10.000 s)

Number of ECG events detected : 88 (average pulse 88 / min.)
Computing projector
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 35 Hz

FIR filter parameters
---------------------
Designing a two-pass forward and reverse, zero-phase, non-causal bandpass filter:
- Windowed frequency-domain design (firwin2) method
- Hamming window
- Lower passband edge: 1.00
- Lower transition bandwidth: 0.50 Hz (-12 dB cutoff frequency: 0.75 Hz)
- Upper passband edge: 35.00 Hz
- Upper transition bandwidth: 0.50 Hz (-12 dB cutoff frequency: 35.25 Hz)
- Filter length: 800 samples (10.000 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 287 tasks      | elapsed:    0.1s
Not setting metadata
88 matching events found
No baseline correction applied
0 projection items activated
Using data from preloaded Raw for 88 events and 49 original time points ...
    Rejecting  epoch based on MAG : ['MLT31-4407', 'MRT31-4407']
    Rejecting  epoch based on MAG : ['MLT31-4407', 'MLT41-4407', 'MRT31-4407', 'MRT41-4407']
    Rejecting  epoch based on MAG : ['MLT31-4407', 'MLT41-4407', 'MRT31-4407', 'MRT41-4407']
4 bad epochs dropped
No channels 'grad' found. Skipping.
Adding projection: axial--0.200-0.400-PCA-01 (exp var=37.7%)
Adding projection: axial--0.200-0.400-PCA-02 (exp var=22.8%)
No channels 'eeg' found. Skipping.
Done.
Including 0 SSP projectors from raw file
Running EOG SSP computation
Using EOG channel: MLT31-4407
EOG channel index for this subject is: [137]
Filtering the data to remove DC offset to help distinguish blinks from saccades
Selecting channel MLT31-4407 for blink detection
Setting up band-pass filter from 1 - 10 Hz

FIR filter parameters
---------------------
Designing a two-pass forward and reverse, zero-phase, non-causal bandpass filter:
- Windowed frequency-domain design (firwin2) method
- Hann window
- Lower passband edge: 1.00
- Lower transition bandwidth: 0.50 Hz (-12 dB cutoff frequency: 0.75 Hz)
- Upper passband edge: 10.00 Hz
- Upper transition bandwidth: 0.50 Hz (-12 dB cutoff frequency: 10.25 Hz)
- Filter length: 800 samples (10.000 s)

Now detecting blinks and generating corresponding events
Found 12 significant peaks
Number of EOG events detected: 12
Computing projector
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 35 Hz

FIR filter parameters
---------------------
Designing a two-pass forward and reverse, zero-phase, non-causal bandpass filter:
- Windowed frequency-domain design (firwin2) method
- Hamming window
- Lower passband edge: 1.00
- Lower transition bandwidth: 0.50 Hz (-12 dB cutoff frequency: 0.75 Hz)
- Upper passband edge: 35.00 Hz
- Upper transition bandwidth: 0.50 Hz (-12 dB cutoff frequency: 35.25 Hz)
- Filter length: 800 samples (10.000 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 287 tasks      | elapsed:    0.1s
Not setting metadata
12 matching events found
No baseline correction applied
0 projection items activated
Using data from preloaded Raw for 12 events and 33 original time points ...
    Rejecting  epoch based on MAG : ['MRT41-4407']
1 bad epochs dropped
No channels 'grad' found. Skipping.
Adding projection: axial--0.200-0.200-PCA-01 (exp var=92.2%)
Adding projection: axial--0.200-0.200-PCA-02 (exp var=2.4%)
No channels 'eeg' found. Skipping.
Done.
4 projection items deactivated
Created an SSP operator (subspace dimension = 4)
4 projection items activated
SSP projectors applied...
Using up to 300 segments
Number of samples used : 4800
[done]

Now we band-pass filter our data and create epochs.

raw.filter(14, 30)
events = mne.make_fixed_length_events(raw, duration=5.0)
epochs = mne.Epochs(
    raw,
    events=events,
    tmin=0,
    tmax=5.0,
    baseline=None,
    reject=dict(mag=8e-13),
    preload=True,
)
data_cov = mne.compute_covariance(epochs)
del raw, projs_ecg, projs_eog
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 14 - 30 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 14.00
- Lower transition bandwidth: 3.50 Hz (-6 dB cutoff frequency: 12.25 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 77 samples (0.963 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 287 tasks      | elapsed:    0.2s
Not setting metadata
12 matching events found
No baseline correction applied
Created an SSP operator (subspace dimension = 4)
4 projection items activated
Using data from preloaded Raw for 12 events and 401 original time points ...
    Rejecting  epoch based on MAG : ['MRC42-4407', 'MRC54-4407', 'MRP12-4407', 'MRP22-4407', 'MRP23-4407']
2 bad epochs dropped
Removing 5 compensators from info because not all compensation channels were picked.
    Created an SSP operator (subspace dimension = 4)
    Setting small MAG eigenvalues to zero (without PCA)
Reducing data rank from 272 -> 268
Estimating covariance using EMPIRICAL
Done.
Number of samples used : 4010
[done]

Compute the forward and inverse#

# This source space is really far too coarse, but we do this for speed
# considerations here
pos = 15.0  # 1.5 cm is very broad, done here for speed!
src = mne.setup_volume_source_space(
    "bst_resting", pos, bem=bem, subjects_dir=subjects_dir, verbose=True
)
fwd = mne.make_forward_solution(epochs.info, trans, src, bem)
filters = make_lcmv(
    epochs.info, fwd, data_cov, 0.05, cov, pick_ori="max-power", weight_norm="nai"
)
del fwd, data_cov, cov
BEM              : /home/circleci/mne_data/MNE-brainstorm-data/bst_resting/subjects/bst_resting/bem/bst_resting-5120-bem-sol.fif
grid                  : 15.0 mm
mindist               : 5.0 mm
MRI volume            : /home/circleci/mne_data/MNE-brainstorm-data/bst_resting/subjects/bst_resting/mri/T1.mgz

Reading /home/circleci/mne_data/MNE-brainstorm-data/bst_resting/subjects/bst_resting/mri/T1.mgz...

Loaded inner skull from /home/circleci/mne_data/MNE-brainstorm-data/bst_resting/subjects/bst_resting/bem/bst_resting-5120-bem-sol.fif (2562 nodes)
Surface CM = (   3.1  -22.2   29.7) mm
Surface fits inside a sphere with radius  105.3 mm
Surface extent:
    x =  -71.2 ...   75.4 mm
    y = -110.1 ...   82.9 mm
    z =  -48.4 ...   98.1 mm
Grid extent:
    x =  -75.0 ...   90.0 mm
    y = -120.0 ...   90.0 mm
    z =  -60.0 ...  105.0 mm
2160 sources before omitting any.
1364 sources after omitting infeasible sources not within 0.0 - 105.3 mm.
Source spaces are in MRI coordinates.
Checking that the sources are inside the surface and at least    5.0 mm away (will take a few...)
Checking surface interior status for 1364 points...
    Found  150/1364 points inside  an interior sphere of radius   49.6 mm
    Found    0/1364 points outside an exterior sphere of radius  105.3 mm
    Found  761/1214 points outside using surface Qhull
    Found   30/ 453 points outside using solid angles
    Total 573/1364 points inside the surface
Interior check completed in 822.9 ms
    791 source space points omitted because they are outside the inner skull surface.
    94 source space points omitted because of the    5.0-mm distance limit.
479 sources remaining after excluding the sources outside the surface and less than    5.0 mm inside.
Adjusting the neighborhood info.
Source space : MRI voxel -> MRI (surface RAS)
    0.015000 0.000000 0.000000     -75.00 mm
    0.000000 0.015000 0.000000    -120.00 mm
    0.000000 0.000000 0.015000     -60.00 mm
    0.000000 0.000000 0.000000       1.00
MRI volume : MRI voxel -> MRI (surface RAS)
    -0.001000 0.000000 0.000000     128.00 mm
    0.000000 0.000000 0.001000    -128.00 mm
    0.000000 -0.001000 0.000000     128.00 mm
    0.000000 0.000000 0.000000       1.00
MRI volume : MRI (surface RAS) -> RAS (non-zero origin)
    1.000000 0.000000 0.000000       0.00 mm
    0.000000 1.000000 0.000000       0.00 mm
    0.000000 0.000000 1.000000       0.00 mm
    0.000000 0.000000 0.000000       1.00
Setting up volume interpolation ...
    18327567/16777216 nonzero values for the whole brain
[done]
Source space          : <SourceSpaces: [<volume, shape=(np.int64(12), np.int64(15), np.int64(12)), n_used=479>] MRI (surface RAS) coords, subject 'bst_resting', ~128.5 MB>
MRI -> head transform : /home/circleci/mne_data/MNE-brainstorm-data/bst_resting/MEG/bst_resting/bst_resting-trans.fif
Measurement data      : instance of Info
Conductor model   : /home/circleci/mne_data/MNE-brainstorm-data/bst_resting/subjects/bst_resting/bem/bst_resting-5120-bem-sol.fif
Accurate field computations
Do computations in head coordinates
Free source orientations

Read 1 source spaces a total of 479 active source locations

Coordinate transformation: MRI (surface RAS) -> head
    0.999797 -0.005775 -0.019288       2.71 mm
    0.011390 0.952195 0.305279      16.66 mm
    0.016602 -0.305437 0.952068      28.47 mm
    0.000000 0.000000 0.000000       1.00

Read 298 MEG channels from info
Read 26 MEG compensation channels from info
5 compensation data sets in info
Setting up compensation data...
    Desired compensation data (3) found.
    All compensation channels found.
    Preselector created.
    Compensation data matrix created.
    Postselector created.
105 coil definitions read
Coordinate transformation: MEG device -> head
    0.998490 -0.050225 -0.022235       1.90 mm
    0.052235 0.993447 0.101656      13.13 mm
    0.016984 -0.102664 0.994571      66.69 mm
    0.000000 0.000000 0.000000       1.00
MEG coil definitions created in head coordinates.
Removing 5 compensators from info because not all compensation channels were picked.
Source spaces are now in head coordinates.

Setting up the BEM model using /home/circleci/mne_data/MNE-brainstorm-data/bst_resting/subjects/bst_resting/bem/bst_resting-5120-bem-sol.fif...

Loading surfaces...

Loading the solution matrix...

Homogeneous model surface loaded.
Loaded linear collocation BEM solution from /home/circleci/mne_data/MNE-brainstorm-data/bst_resting/subjects/bst_resting/bem/bst_resting-5120-bem-sol.fif
Employing the head->MRI coordinate transform with the BEM model.
BEM model bst_resting-5120-bem-sol.fif is now set up

Source spaces are in head coordinates.
Checking that the sources are inside the surface (will take a few...)
Checking surface interior status for 479 points...
    Found 150/479 points inside  an interior sphere of radius   49.6 mm
    Found   0/479 points outside an exterior sphere of radius  105.3 mm
    Found   0/329 points outside using surface Qhull
    Found   0/329 points outside using solid angles
    Total 479/479 points inside the surface
Interior check completed in 665.1 ms

Checking surface interior status for 298 points...
    Found   0/298 points inside  an interior sphere of radius   49.6 mm
    Found 283/298 points outside an exterior sphere of radius  105.3 mm
    Found  15/ 15 points outside using surface Qhull
    Found   0/  0 points outside using solid angles
    Total 0/298 points inside the surface
Interior check completed in 299.7 ms

Composing the field computation matrix...
Computing MEG at 479 source locations (free orientations)...

Finished.
Removing 5 compensators from info because not all compensation channels were picked.
Removing 5 compensators from info because not all compensation channels were picked.
Computing rank from covariance with rank='info'
    MAG: rank 268 after 4 projectors applied to {n_chan} channel{_pl(n_chan)}
Computing rank from covariance with rank='info'
    MAG: rank 268 after 4 projectors applied to {n_chan} channel{_pl(n_chan)}
Making LCMV beamformer with rank {'mag': 268}
Computing inverse operator with 272 channels.
    272 out of 272 channels remain after picking
Selected 272 channels
Whitening the forward solution.
    Created an SSP operator (subspace dimension = 4)
Computing rank from covariance with rank={'mag': 268}
    Setting small MAG eigenvalues to zero (without PCA)
Creating the source covariance matrix
Adjusting source covariance matrix.
Computing beamformer filters for 479 sources
Filter computation complete

Compute label time series and do envelope correlation#

epochs.apply_hilbert()  # faster to do in sensor space
stcs = apply_lcmv_epochs(epochs, filters, return_generator=True)
corr = envelope_correlation(stcs, verbose=True)
del stcs, epochs, filters

# average over epochs
corr = corr.combine()
Processing epoch : 1
Processing epoch : 2
Processing epoch : 3
Processing epoch : 4
Processing epoch : 5
Processing epoch : 6
Processing epoch : 7
Processing epoch : 8
Processing epoch : 9
Processing epoch : 10
[done]

Compute the degree and plot it#

degree = mne_connectivity.degree(corr, 0.15)
stc = mne.VolSourceEstimate(degree, [src[0]["vertno"]], 0, 1, "bst_resting")
brain = stc.plot(
    src,
    clim=dict(kind="percent", lims=[75, 85, 95]),
    colormap="gnuplot",
    subjects_dir=subjects_dir,
    mode="glass_brain",
)
mne inverse envelope correlation volume
Transforming subject RAS (non-zero origin) -> MNI Talairach
    1.029906 0.008134 -0.048341      -1.23 mm
    0.013579 0.955254 0.160974      -9.34 mm
    0.075120 -0.143988 1.092494     -28.73 mm
    0.000000 0.000000 0.000000       1.00

Showing: t = 0.000 s, (43.2, -61.2, 16.1) mm, [8, 4, 6] vox, 1136 vertex
Using control points [ 82.5  92.3 107. ]

References#

Total running time of the script: (0 minutes 31.197 seconds)

Gallery generated by Sphinx-Gallery