Note
Go to the end to download the full example code
Reading an STC file#
STC files contain activations on cortex ie. source reconstructions
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause
import matplotlib.pyplot as plt
import mne
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
meg_path = data_path / 'MEG' / 'sample'
fname = meg_path / 'sample_audvis-meg'
stc = mne.read_source_estimate(fname)
n_vertices, n_samples = stc.data.shape
print("stc data size: %s (nb of vertices) x %s (nb of samples)"
% (n_vertices, n_samples))
# View source activations
plt.plot(stc.times, stc.data[::100, :].T)
plt.xlabel('time (ms)')
plt.ylabel('Source amplitude')
plt.show()
stc data size: 7498 (nb of vertices) x 25 (nb of samples)
Total running time of the script: ( 0 minutes 2.430 seconds)
Estimated memory usage: 9 MB