Command line tools using Python#
mne anonymize#
Anonymize raw fif file.#
Usage: mne anonymize [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -f FILE, --file=FILE
 Name of file to modify.
- -o OUTFILE, --output=OUTFILE
 Name of anonymized output file.`anon-` prefix is added to FILE if not given
- --keep_his
 Keep the HIS tag (not advised)
- -d N_DAYS, --daysback=N_DAYS
 Move dates in file backwards by this many days.
- --overwrite
 Overwrite input file.
To anonymize other file types call mne.io.anonymize_info() on their
Info objects and resave to disk.
Examples#
$ mne anonymize -f sample_audvis_raw.fif
mne browse_raw#
Browse raw data.#
Usage: mne browse_raw raw [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- --raw=FILE
 Input raw FIF file (can also be specified directly as an argument without the –raw prefix)
- --proj=FILE
 Projector file
- --projoff
 Disable all projectors
- --eve=FILE
 Events file
- -d DURATION, --duration=DURATION
 Time window for plotting (sec)
- -t START, --start=START
 Initial start time for plotting
- -n N_CHANNELS, --n_channels=N_CHANNELS
 Number of channels to plot at a time
- -o GROUP_BY, --order=GROUP_BY
 Order to use for grouping during plotting (‘type’ or ‘original’)
- -p, --preload
 Preload raw data (for faster navigaton)
- -s SHOW_OPTIONS, --show_options=SHOW_OPTIONS
 Show projection options dialog
- --allowmaxshield
 Allow loading MaxShield processed data
- --highpass=HIGHPASS
 Display high-pass filter corner frequency
- --lowpass=LOWPASS
 Display low-pass filter corner frequency
- --filtorder=FILTORDER
 Display filtering IIR order (or 0 to use FIR)
- --clipping=CLIPPING
 Enable trace clipping mode, either ‘clamp’ or ‘transparent’
- --filterchpi
 Enable filtering cHPI signals.
- --verbose
 Enable verbose mode (printing of log messages).
This uses mne.io.read_raw() so it supports the same formats
(without keyword arguments).
Examples#
$ mne browse_raw sample_audvis_raw.fif \
                 --proj sample_audvis_ecg-proj.fif \
                 --eve sample_audvis_raw-eve.fif
mne bti2fiff#
Import BTi / 4D MagnesWH3600 data to fif file.#
Usage: mne bti2fiff [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -p FILE, --pdf=FILE
 Input data file name
- -c FILE, --config=FILE
 Input config file name
- --head_shape=FILE
 Headshape file name
- -o OUT_FNAME, --out_fname=OUT_FNAME
 Name of the resulting fiff file
- -r ROTATION_X, --rotation_x=ROTATION_X
 Compensatory rotation about Neuromag x axis, deg
- -T TRANSLATION, --translation=TRANSLATION
 Default translation, meter
- --ecg_ch=ECG_CH
 4D ECG channel name
- --eog_ch=EOG_CH
 4D EOG channel names
Notes#
Currently direct inclusion of reference channel weights is not supported. Please use 'mne_create_comp_data' to include the weights or use the low level functions from this module to include them by yourself.
The informed guess for the 4D name is E31 for the ECG channel and E63, E63 for the EOG channels. Please check and adjust if those channels are present in your dataset but ‘ECG 01’ and ‘EOG 01’, ‘EOG 02’ don’t appear in the channel names of the raw object.
Examples#
$ mne bti2fiff --pdf C,rfDC -o my_raw.fif
mne clean_eog_ecg#
Clean a raw file from EOG and ECG artifacts with PCA (ie SSP).#
Usage: mne clean_eog_ecg [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -i FILE, --in=FILE
 Input raw FIF file
- -o FILE, --out=FILE
 Output raw FIF file
- -e, --no-eog
 Remove EOG
- -c, --no-ecg
 Remove ECG
- -q, --quiet
 Suppress mne_process_raw output
Examples#
$ mne clean_eog_ecg -i in_raw.fif -o clean_raw.fif -e -c
mne compare_fiff#
Compare FIFF files.#
Usage: mne compare_fiff <file_a> <file_b>
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
Examples#
$ mne compare_fiff test_raw.fif test_raw_sss.fif
mne compute_proj_ecg#
Compute SSP/PCA projections for ECG artifacts.#
Usage: mne compute_proj_ecg [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -i FILE, --in=FILE
 Input raw FIF file
- --tmin=TMIN
 Time before event in seconds
- --tmax=TMAX
 Time after event in seconds
- -g N_GRAD, --n-grad=N_GRAD
 Number of SSP vectors for gradiometers
- -m N_MAG, --n-mag=N_MAG
 Number of SSP vectors for magnetometers
- -e N_EEG, --n-eeg=N_EEG
 Number of SSP vectors for EEG
- --l-freq=L_FREQ
 Filter low cut-off frequency in Hz
- --h-freq=H_FREQ
 Filter high cut-off frequency in Hz
- --ecg-l-freq=ECG_L_FREQ
 Filter low cut-off frequency in Hz used for ECG event detection
- --ecg-h-freq=ECG_H_FREQ
 Filter high cut-off frequency in Hz used for ECG event detection
- -p PRELOAD, --preload=PRELOAD
 Temporary file used during computation (to save memory)
- -a, --average
 Compute SSP after averaging
- --proj=PROJ
 Use SSP projections from a fif file.
- --filtersize=FILTER_LENGTH
 Number of taps to use for filtering
- -j N_JOBS, --n-jobs=N_JOBS
 Number of jobs to run in parallel
- -c CH_NAME, --channel=CH_NAME
 Channel to use for ECG detection (Required if no ECG found)
- --rej-grad=REJ_GRAD
 Gradiometers rejection parameter in fT/cm (peak to peak amplitude)
- --rej-mag=REJ_MAG
 Magnetometers rejection parameter in fT (peak to peak amplitude)
- --rej-eeg=REJ_EEG
 EEG rejection parameter in µV (peak to peak amplitude)
- --rej-eog=REJ_EOG
 EOG rejection parameter in µV (peak to peak amplitude)
- --avg-ref
 Add EEG average reference proj
- --no-proj
 Exclude the SSP projectors currently in the fiff file
- --bad=BAD_FNAME
 Text file containing bad channels list (one per line)
- --event-id=EVENT_ID
 ID to use for events
- --event-raw=RAW_EVENT_FNAME
 raw file to use for event detection
- --tstart=TSTART
 Start artifact detection after tstart seconds
- --qrsthr=QRS_THRESHOLD
 QRS detection threshold. Between 0 and 1. Can also be ‘auto’ for automatic selection
Examples#
$ mne compute_proj_ecg -i sample_audvis_raw.fif -c "MEG 1531" -a \
                       --l-freq 1 --h-freq 100 \
                       --rej-grad 3000 --rej-mag 4000 --rej-eeg 100
mne compute_proj_eog#
Compute SSP/PCA projections for EOG artifacts.#
Usage: mne compute_proj_eog [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -i FILE, --in=FILE
 Input raw FIF file
- --tmin=TMIN
 Time before event in seconds
- --tmax=TMAX
 Time after event in seconds
- -g N_GRAD, --n-grad=N_GRAD
 Number of SSP vectors for gradiometers
- -m N_MAG, --n-mag=N_MAG
 Number of SSP vectors for magnetometers
- -e N_EEG, --n-eeg=N_EEG
 Number of SSP vectors for EEG
- --l-freq=L_FREQ
 Filter low cut-off frequency in Hz
- --h-freq=H_FREQ
 Filter high cut-off frequency in Hz
- --eog-l-freq=EOG_L_FREQ
 Filter low cut-off frequency in Hz used for EOG event detection
- --eog-h-freq=EOG_H_FREQ
 Filter high cut-off frequency in Hz used for EOG event detection
- -p PRELOAD, --preload=PRELOAD
 Temporary file used during computation (to save memory)
- -a, --average
 Compute SSP after averaging
- --proj=PROJ
 Use SSP projections from a fif file.
- --filtersize=FILTER_LENGTH
 Number of taps to use for filtering
- -j N_JOBS, --n-jobs=N_JOBS
 Number of jobs to run in parallel
- --rej-grad=REJ_GRAD
 Gradiometers rejection parameter in fT/cm (peak to peak amplitude)
- --rej-mag=REJ_MAG
 Magnetometers rejection parameter in fT (peak to peak amplitude)
- --rej-eeg=REJ_EEG
 EEG rejection parameter in µV (peak to peak amplitude)
- --rej-eog=REJ_EOG
 EOG rejection parameter in µV (peak to peak amplitude)
- --avg-ref
 Add EEG average reference proj
- --no-proj
 Exclude the SSP projectors currently in the fiff file
- --bad=BAD_FNAME
 Text file containing bad channels list (one per line)
- --event-id=EVENT_ID
 ID to use for events
- --event-raw=RAW_EVENT_FNAME
 raw file to use for event detection
- --tstart=TSTART
 Start artifact detection after tstart seconds
- -c CH_NAME, --channel=CH_NAME
 Custom EOG channel(s), comma separated
Examples#
$ mne compute_proj_eog -i sample_audvis_raw.fif -a \
                       --l-freq 1 --h-freq 35 \
                       --rej-grad 3000 --rej-mag 4000 --rej-eeg 100
or
$ mne compute_proj_eog -i sample_audvis_raw.fif -a \
                       --l-freq 1 --h-freq 35 \
                       --rej-grad 3000 --rej-mag 4000 --rej-eeg 100 \
                       --proj sample_audvis_ecg-proj.fif
to exclude ECG artifacts from projection computation.
mne coreg#
Open the coregistration GUI.#
Usage: mne coreg [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -d SUBJECTS_DIR, --subjects-dir=SUBJECTS_DIR
 Subjects directory
- -s SUBJECT, --subject=SUBJECT
 Subject name
- -f INST, --fiff=INST
 FIFF file with digitizer data for coregistration
- -t, --tabbed
 Option for small screens: Combine the data source panel and the coregistration panel into a single panel with tabs.
- --no-guess-mri
 Prevent the GUI from automatically guessing and changing the MRI subject when a new head shape source file is selected.
- --head-opacity=HEAD_OPACITY
 The opacity of the head surface, in the range [0, 1].
- --high-res-head
 Use a high-resolution head surface.
- --low-res-head
 Use a low-resolution head surface.
- --trans=TRANS
 Head<->MRI transform FIF file (“-trans.fif”)
- --interaction=INTERACTION
 Interaction style to use, can be “trackball” or “terrain”.
- --scale=SCALE
 Scale factor for the scene.
- --simple-rendering
 Use simplified OpenGL rendering
- --verbose
 Enable verbose mode (printing of log messages).
Examples#
$ mne coreg
mne flash_bem#
Create 3-layer BEM model from Flash MRI images.#
Usage: mne flash_bem [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -s SUBJECT, --subject=SUBJECT
 Subject name
- -d SUBJECTS_DIR, --subjects-dir=SUBJECTS_DIR
 Subjects directory
- -3, --flash30, --noflash30
 The 30-degree flip angle data. If no argument do not use flash30. If arguments are given, them as file names.
- -5, --flash5
 Path to the multiecho flash 5 images. Can be one file or one per echo.
- -r, --registered
 Set if the Flash MRI images have already been registered with the T1.mgz file.
- -n, --noconvert
 [DEPRECATED] Assume that the Flash MRI images have already been converted to mgz files
- -u, --unwarp
 Run grad_unwarp with -unwarp <type> option on each of the converted data sets
- -o, --overwrite
 Write over existing .surf files in bem folder
- -v, --view
 Show BEM model in 3D for visual inspection
- --copy
 Use copies instead of symlinks for surfaces
- -p FLASH_PATH, --flash-path=FLASH_PATH
 [DEPRECATED] The directory containing flash5.mgz files (defaults to $SUBJECTS_DIR/$SUBJECT/mri/flash/parameter_maps
Examples#
$ mne flash_bem --subject=sample
$ mne flash_bem -s sample -n --registered -5 sample/mri/mef05.mgz -3 sample/mri/mef30.mgz
$ mne flash_bem -s sample -n --registered -5 sample/mri/flash/mef05_*.mgz -3 sample/mri/flash/mef30_*.mgz
Notes#
This program assumes that FreeSurfer and MNE are installed and sourced properly.
This function extracts the BEM surfaces (outer skull, inner skull, and outer skin) from multiecho FLASH MRI data with spin angles of 5 and 30 degrees. The multiecho FLASH data can be input as .mgz or .nii files. This function assumes that the Freesurfer segmentation of the subject has been completed. In particular, the T1.mgz and brain.mgz MRI volumes should be, as usual, in the subject’s mri directory.
mne freeview_bem_surfaces#
View the 3-Layers BEM model using Freeview.#
Usage: mne freeview_bem_surfaces [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -s SUBJECT, --subject=SUBJECT
 Subject name
- -d SUBJECTS_DIR, --subjects-dir=SUBJECTS_DIR
 Subjects directory
- -m METHOD, --method=METHOD
 Method used to generate the BEM model. Can be flash or watershed.
Examples#
$ mne freeview_bem_surfaces -s sample
mne kit2fiff#
Import KIT / NYU data to fif file.#
Usage: mne kit2fiff [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- --input=filename
 Input data file name
- --mrk=filename
 MEG Marker file name
- --elp=filename
 Headshape points file name
- --hsp=filename
 Headshape file name
- --stim=chs
 Colon Separated Stimulus Trigger Channels
- --slope=slope
 Slope direction
- --stimthresh=value
 Threshold value for trigger channels
- --output=filename
 Name of the resulting fiff file
- --debug
 Set logging level for terminal output to debug
Examples#
$ mne kit2fiff --input input.sqd --output output.fif
Use without arguments to invoke GUI:
$ mne kt2fiff
mne make_scalp_surfaces#
Create high-resolution head surfaces for coordinate alignment.#
Usage: mne make_scalp_surfaces [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -o, --overwrite
 Overwrite previously computed surface
- -s SUBJECT, --subject=SUBJECT
 The name of the subject
- -m MRI, --mri=MRI
 The MRI file to process using mkheadsurf.
- -f, --force
 Force creation of the surface even if it has some topological defects.
- -t THRESHOLD, --threshold=THRESHOLD
 Threshold value to use with the MRI.
- -d SUBJECTS_DIR, --subjects-dir=SUBJECTS_DIR
 Subjects directory
- -n, --no-decimate
 Disable medium and sparse decimations (dense only)
- --verbose
 Enable verbose mode (printing of log messages).
Examples#
$ mne make_scalp_surfaces --overwrite --subject sample
mne maxfilter#
Apply MaxFilter.#
Usage: mne maxfilter [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -i FILE, --in=FILE
 Input raw FIF file
- -o FILE
 Output FIF file (if not set, suffix ‘_sss’ will be used)
- --origin=ORIGIN
 Head origin in mm, or a filename to read the origin from. If not set it will be estimated from headshape points
- --origin-out=ORIGIN_OUT
 Filename to use for computed origin
- --frame=FRAME
 Coordinate frame for head center (‘device’ or ‘head’)
- --bad=BAD
 List of static bad channels
- --autobad=AUTOBAD
 Set automated bad channel detection (‘on’, ‘off’, ‘n’)
- --skip=SKIP
 Skips raw data sequences, time intervals pairs in sec, e.g.: 0 30 120 150
- --force
 Ignore program warnings
- --st
 Apply the time-domain MaxST extension
- --buflen=ST_BUFLEN
 MaxSt buffer length in sec
- --corr=ST_CORR
 MaxSt subspace correlation
- --trans=MV_TRANS
 Transforms the data into the coil definitions of in_fname, or into the default frame
- --movecomp
 Estimates and compensates head movements in continuous raw data
- --headpos
 Estimates and stores head position parameters, but does not compensate movements
- --hp=MV_HP
 Stores head position data in an ascii file
- --hpistep=MV_HPISTEP
 Sets head position update interval in ms
- --hpisubt=MV_HPISUBT
 Subtracts hpi signals: sine amplitudes, amp + baseline, or switch off
- --nohpicons
 Do not check initial consistency isotrak vs hpifit
- --linefreq=LINEFREQ
 Sets the basic line interference frequency (50 or 60 Hz)
- --nooverwrite
 Do not overwrite output file if it already exists
- --args=MX_ARGS
 Additional command line arguments to pass to MaxFilter
Examples#
$ mne maxfilter -i sample_audvis_raw.fif --st
This will apply MaxFilter with the MaxSt extension. The origin used by MaxFilter is computed by mne-python by fitting a sphere to the headshape points.
mne prepare_bem_model#
Create a BEM solution using the linear collocation approach.#
Usage: mne prepare_bem_model [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- --bem=FILE
 The name of the file containing the triangulations of the BEM surfaces and the conductivities of the compartments. The standard ending for this file is -bem.fif.
- --sol=FILE
 The name of the resulting file containing BEM solution (geometry matrix). It uses the linear collocation approach. The file should end with -bem-sof.fif.
- --verbose
 Enable verbose mode (printing of log messages).
Examples#
$ mne prepare_bem_model --bem sample-5120-5120-5120-bem.fif
mne report#
Create mne report for a folder.#
Usage: mne report [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -p PATH, --path=PATH
 Path to folder who MNE-Report must be created
- -i FILE, --info=FILE
 File from which info dictionary is to be read
- -c FILE, --cov=FILE
 File from which noise covariance is to be read
- --bmin=BMIN
 Time at which baseline correction starts for evokeds
- --bmax=BMAX
 Time at which baseline correction stops for evokeds
- -d SUBJECTS_DIR, --subjects-dir=SUBJECTS_DIR
 The subjects directory
- -s SUBJECT, --subject=SUBJECT
 The subject name
- --no-browser
 Do not open MNE-Report in browser
- --overwrite
 Overwrite html report if it already exists
- -j N_JOBS, --jobs=N_JOBS
 Number of jobs to run in parallel
- -m MRI_DECIM, --mri-decim=MRI_DECIM
 Integer factor used to decimate BEM plots
- --image-format=IMAGE_FORMAT
 Image format to use (can be ‘png’ or ‘svg’)
- --verbose
 Enable verbose mode (printing of log messages).
Examples#
Before getting started with mne report, make sure the files you want to
render follow the filename conventions defined by MNE:
Data object  | 
Filename convention (ends with)  | 
|---|---|
raw  | 
-raw.fif(.gz), -raw_sss.fif(.gz), -raw_tsss.fif(.gz), _meg.fif(.gz), _eeg.fif(.gz), _ieeg.fif(.gz)  | 
events  | 
-eve.fif(.gz)  | 
epochs  | 
-epo.fif(.gz)  | 
evoked  | 
-ave.fif(.gz)  | 
covariance  | 
-cov.fif(.gz)  | 
trans  | 
-trans.fif(.gz)  | 
forward  | 
-fwd.fif(.gz)  | 
inverse  | 
-inv.fif(.gz)  | 
To generate a barebones report from all the *.fif files in the sample dataset, invoke the following command in a system (e.g., Bash) shell:
$ mne report --path MNE-sample-data/ --verbose
On successful creation of the report, it will open the HTML in a new tab in
the browser. To disable this, use the --no-browser option.
TO generate a report for a single subject, give the SUBJECT name and
the SUBJECTS_DIR and this will generate the MRI slices (with BEM
contours overlaid on top if available):
$ mne report --path MNE-sample-data/ --subject sample --subjects-dir \
    MNE-sample-data/subjects --verbose
To properly render trans and covariance files, add the measurement
information:
$ mne report --path MNE-sample-data/ \
    --info MNE-sample-data/MEG/sample/sample_audvis-ave.fif \
    --subject sample --subjects-dir MNE-sample-data/subjects --verbose
To render whitened evoked files with baseline correction, add the noise
covariance file:
$ mne report --path MNE-sample-data/ \
    --info MNE-sample-data/MEG/sample/sample_audvis-ave.fif \
    --cov MNE-sample-data/MEG/sample/sample_audvis-cov.fif --bmax 0 \
    --subject sample --subjects-dir MNE-sample-data/subjects --verbose
To generate the report in parallel:
$ mne report --path MNE-sample-data/ \
    --info MNE-sample-data/MEG/sample/sample_audvis-ave.fif \
    --subject sample --subjects-dir MNE-sample-data/subjects \
    --verbose --jobs 6
For help on all the available options, do:
$ mne report --help
mne setup_forward_model#
Create a BEM model for a subject.#
Usage: mne setup_forward_model [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -s SUBJECT, --subject=SUBJECT
 Subject name (required)
- --model=MODEL
 Output file name. Use a name <dir>/<name>-bem.fif
- --ico=ICO
 The surface ico downsampling to use, e.g. 5=20484, 4=5120, 3=1280. If None, no subsampling is applied.
- --brainc=BRAINC
 Defines the brain compartment conductivity. The default value is 0.3 S/m.
- --skullc=SKULLC
 Defines the skull compartment conductivity. The default value is 0.006 S/m.
- --scalpc=SCALPC
 Defines the scalp compartment conductivity. The default value is 0.3 S/m.
- --homog
 Use a single compartment model (brain only) instead a three layer one (scalp, skull, and brain). If this flag is specified, the options –skullc and –scalpc are irrelevant.
- -d SUBJECTS_DIR, --subjects-dir=SUBJECTS_DIR
 Subjects directory
- --verbose
 Enable verbose mode (printing of log messages).
Examples#
$ mne setup_forward_model -s 'sample'
mne setup_source_space#
Set up bilateral hemisphere surface-based source space with subsampling.#
Usage: mne setup_source_space [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -s SUBJECT, --subject=SUBJECT
 Subject name (required)
- --src=FILE
 Output file name. Use a name <dir>/<name>-src.fif
- --morph=SUBJECT_TO
 morph the source space to this subject
- --surf=SURFACE
 The surface to use. (default to white)
- --spacing=SPACING
 Specifies the approximate grid spacing of the source space in mm. (default to 7mm)
- --ico=ICO
 use the recursively subdivided icosahedron to create the source space.
- --oct=OCT
 use the recursively subdivided octahedron to create the source space.
- -d SUBJECTS_DIR, --subjects-dir=SUBJECTS_DIR
 Subjects directory
- -n N_JOBS, --n-jobs=N_JOBS
 The number of jobs to run in parallel (default 1). Requires the joblib package. Will use at most 2 jobs (one for each hemisphere).
- --add-dist=ADD_DIST
 Add distances. Can be “True”, “False”, or “patch” to only compute cortical patch statistics (like the –cps option in MNE-C; requires SciPy >= 1.3)
- -o, --overwrite
 to write over existing files
- --verbose
 Enable verbose mode (printing of log messages).
Examples#
   $ mne setup_source_space --subject sample
.. note : Only one of --ico, --oct or --spacing options can be set at the same
          time. Default to oct6.
mne show_fiff#
Show the contents of a FIFF file.#
Usage: mne show_fiff <file>
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -t TAG, --tag=TAG
 provide information about this tag
Examples#
$ mne show_fiff test_raw.fif
To see only tag 102:
$ mne show_fiff test_raw.fif --tag=102
mne show_info#
Show measurement info from .fif file.#
Usage: mne show_info <file>
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
Examples#
$ mne show_info sample_audvis_raw.fif
mne surf2bem#
Convert surface to BEM FIF file.#
Usage: mne surf2bem [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -s FILE, --surf=FILE
 Surface in Freesurfer format
- -f FILE, --fif=FILE
 FIF file produced
- -i ID, --id=ID
 Surface Id (e.g. 4 for head surface)
Examples#
$ mne surf2bem --surf ${SUBJECTS_DIR}/${SUBJECT}/surf/lh.seghead \
    --fif ${SUBJECTS_DIR}/${SUBJECT}/bem/${SUBJECT}-head.fif \
    --id=4
mne sys_info#
Show system information.#
Usage: mne sys_info
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -p, --show-paths
 Show module paths
- -d, --developer
 Show additional developer module information
Examples#
$ mne sys_info
mne watershed_bem#
Create BEM surfaces using the watershed algorithm included with FreeSurfer.#
Usage: mne watershed_bem [options]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
- -s SUBJECT, --subject=SUBJECT
 Subject name (required)
- -d SUBJECTS_DIR, --subjects-dir=SUBJECTS_DIR
 Subjects directory
- -o, --overwrite
 Write over existing files
- -v VOLUME, --volume=VOLUME
 Defaults to T1
- -a, --atlas
 Specify the –atlas option for mri_watershed
- -g, --gcaatlas
 Specify the –brain_atlas option for mri_watershed
- -p PREFLOOD, --preflood=PREFLOOD
 Change the preflood height
- --copy
 Use copies instead of symlinks for surfaces
- -t T1, --T1=T1
 Whether or not to pass the -T1 flag (can be true, false, 0, or 1). By default it takes the same value as gcaatlas.
- -b BRAINMASK, --brainmask=BRAINMASK
 The filename for the brainmask output file relative to the $SUBJECTS_DIR/$SUBJECT/bem/watershed/ directory.
- --verbose
 Enable verbose mode (printing of log messages).
Examples#
$ mne watershed_bem -s sample
mne what#
Check type of FIF file.#
Usage: mne what fname [fname2 ...]
Options#
- --version
 show program’s version number and exit
- -h, --help
 show this help message and exit
Examples#
$ mne what sample_audvis_raw.fif
raw