Note
Go to the end to download the full example code
Decoding sensor space data with generalization across time and conditions#
This example runs the analysis described in 1. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.
# Authors: Jean-Remi King <jeanremi.king@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
import matplotlib.pyplot as plt
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator
print(__doc__)
# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads") # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin") # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
"Auditory/Left": 1,
"Auditory/Right": 2,
"Visual/Left": 3,
"Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
raw,
events,
event_id=event_id,
tmin=tmin,
tmax=tmax,
proj=True,
picks=picks,
baseline=None,
preload=True,
reject=dict(mag=5e-12),
decim=decim,
verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Reading 0 ... 41699 = 0.000 ... 277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)
[Parallel(n_jobs=1)]: Done 17 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 71 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 161 tasks | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 287 tasks | elapsed: 0.5s
We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.
clf = make_pipeline(
StandardScaler(),
LogisticRegression(solver="liblinear"), # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)
# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(), y=epochs["Left"].events[:, 2] > 2)
0%| | Fitting GeneralizingEstimator : 0/35 [00:00<?, ?it/s]
6%|▌ | Fitting GeneralizingEstimator : 2/35 [00:00<00:00, 58.46it/s]
11%|█▏ | Fitting GeneralizingEstimator : 4/35 [00:00<00:00, 58.77it/s]
17%|█▋ | Fitting GeneralizingEstimator : 6/35 [00:00<00:00, 58.96it/s]
26%|██▌ | Fitting GeneralizingEstimator : 9/35 [00:00<00:00, 66.94it/s]
34%|███▍ | Fitting GeneralizingEstimator : 12/35 [00:00<00:00, 71.77it/s]
43%|████▎ | Fitting GeneralizingEstimator : 15/35 [00:00<00:00, 74.97it/s]
54%|█████▍ | Fitting GeneralizingEstimator : 19/35 [00:00<00:00, 82.13it/s]
60%|██████ | Fitting GeneralizingEstimator : 21/35 [00:00<00:00, 78.73it/s]
69%|██████▊ | Fitting GeneralizingEstimator : 24/35 [00:00<00:00, 80.07it/s]
74%|███████▍ | Fitting GeneralizingEstimator : 26/35 [00:00<00:00, 77.47it/s]
83%|████████▎ | Fitting GeneralizingEstimator : 29/35 [00:00<00:00, 78.74it/s]
89%|████████▊ | Fitting GeneralizingEstimator : 31/35 [00:00<00:00, 76.62it/s]
97%|█████████▋| Fitting GeneralizingEstimator : 34/35 [00:00<00:00, 77.87it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00, 78.11it/s]
Score on the epochs where the stimulus was presented to the right.
scores = time_gen.score(
X=epochs["Right"].get_data(), y=epochs["Right"].events[:, 2] > 2
)
0%| | Scoring GeneralizingEstimator : 0/1225 [00:00<?, ?it/s]
1%| | Scoring GeneralizingEstimator : 12/1225 [00:00<00:03, 349.59it/s]
2%|▏ | Scoring GeneralizingEstimator : 28/1225 [00:00<00:02, 412.62it/s]
4%|▎ | Scoring GeneralizingEstimator : 44/1225 [00:00<00:02, 433.74it/s]
5%|▍ | Scoring GeneralizingEstimator : 59/1225 [00:00<00:02, 436.65it/s]
6%|▌ | Scoring GeneralizingEstimator : 75/1225 [00:00<00:02, 444.77it/s]
7%|▋ | Scoring GeneralizingEstimator : 90/1225 [00:00<00:02, 444.39it/s]
9%|▊ | Scoring GeneralizingEstimator : 106/1225 [00:00<00:02, 449.12it/s]
10%|▉ | Scoring GeneralizingEstimator : 121/1225 [00:00<00:02, 448.25it/s]
11%|█ | Scoring GeneralizingEstimator : 137/1225 [00:00<00:02, 451.26it/s]
12%|█▏ | Scoring GeneralizingEstimator : 152/1225 [00:00<00:02, 450.18it/s]
14%|█▎ | Scoring GeneralizingEstimator : 168/1225 [00:00<00:02, 452.99it/s]
15%|█▍ | Scoring GeneralizingEstimator : 183/1225 [00:00<00:02, 451.44it/s]
16%|█▌ | Scoring GeneralizingEstimator : 199/1225 [00:00<00:02, 453.81it/s]
18%|█▊ | Scoring GeneralizingEstimator : 215/1225 [00:00<00:02, 455.61it/s]
19%|█▉ | Scoring GeneralizingEstimator : 230/1225 [00:00<00:02, 454.29it/s]
20%|██ | Scoring GeneralizingEstimator : 246/1225 [00:00<00:02, 455.98it/s]
21%|██▏ | Scoring GeneralizingEstimator : 262/1225 [00:00<00:02, 457.43it/s]
23%|██▎ | Scoring GeneralizingEstimator : 278/1225 [00:00<00:02, 458.64it/s]
24%|██▍ | Scoring GeneralizingEstimator : 294/1225 [00:00<00:02, 459.86it/s]
25%|██▌ | Scoring GeneralizingEstimator : 309/1225 [00:00<00:01, 458.67it/s]
27%|██▋ | Scoring GeneralizingEstimator : 325/1225 [00:00<00:01, 459.84it/s]
28%|██▊ | Scoring GeneralizingEstimator : 340/1225 [00:00<00:01, 458.62it/s]
29%|██▉ | Scoring GeneralizingEstimator : 356/1225 [00:00<00:01, 459.29it/s]
30%|███ | Scoring GeneralizingEstimator : 371/1225 [00:00<00:01, 458.10it/s]
31%|███▏ | Scoring GeneralizingEstimator : 385/1225 [00:00<00:01, 455.01it/s]
33%|███▎ | Scoring GeneralizingEstimator : 399/1225 [00:00<00:01, 451.87it/s]
34%|███▍ | Scoring GeneralizingEstimator : 414/1225 [00:00<00:01, 451.31it/s]
35%|███▌ | Scoring GeneralizingEstimator : 429/1225 [00:00<00:01, 450.86it/s]
36%|███▌ | Scoring GeneralizingEstimator : 444/1225 [00:00<00:01, 450.31it/s]
38%|███▊ | Scoring GeneralizingEstimator : 460/1225 [00:01<00:01, 451.61it/s]
39%|███▉ | Scoring GeneralizingEstimator : 476/1225 [00:01<00:01, 452.98it/s]
40%|████ | Scoring GeneralizingEstimator : 491/1225 [00:01<00:01, 452.31it/s]
41%|████▏ | Scoring GeneralizingEstimator : 507/1225 [00:01<00:01, 453.61it/s]
43%|████▎ | Scoring GeneralizingEstimator : 524/1225 [00:01<00:01, 456.43it/s]
44%|████▍ | Scoring GeneralizingEstimator : 540/1225 [00:01<00:01, 457.47it/s]
45%|████▌ | Scoring GeneralizingEstimator : 556/1225 [00:01<00:01, 458.45it/s]
47%|████▋ | Scoring GeneralizingEstimator : 572/1225 [00:01<00:01, 459.25it/s]
48%|████▊ | Scoring GeneralizingEstimator : 588/1225 [00:01<00:01, 459.99it/s]
49%|████▉ | Scoring GeneralizingEstimator : 604/1225 [00:01<00:01, 460.30it/s]
51%|█████ | Scoring GeneralizingEstimator : 620/1225 [00:01<00:01, 460.97it/s]
52%|█████▏ | Scoring GeneralizingEstimator : 636/1225 [00:01<00:01, 461.68it/s]
53%|█████▎ | Scoring GeneralizingEstimator : 651/1225 [00:01<00:01, 460.31it/s]
54%|█████▍ | Scoring GeneralizingEstimator : 667/1225 [00:01<00:01, 460.63it/s]
56%|█████▌ | Scoring GeneralizingEstimator : 683/1225 [00:01<00:01, 461.36it/s]
57%|█████▋ | Scoring GeneralizingEstimator : 699/1225 [00:01<00:01, 461.99it/s]
58%|█████▊ | Scoring GeneralizingEstimator : 715/1225 [00:01<00:01, 462.67it/s]
60%|█████▉ | Scoring GeneralizingEstimator : 731/1225 [00:01<00:01, 463.21it/s]
61%|██████ | Scoring GeneralizingEstimator : 747/1225 [00:01<00:01, 463.68it/s]
62%|██████▏ | Scoring GeneralizingEstimator : 764/1225 [00:01<00:00, 465.86it/s]
64%|██████▎ | Scoring GeneralizingEstimator : 780/1225 [00:01<00:00, 466.32it/s]
65%|██████▍ | Scoring GeneralizingEstimator : 796/1225 [00:01<00:00, 466.63it/s]
66%|██████▋ | Scoring GeneralizingEstimator : 813/1225 [00:01<00:00, 468.63it/s]
68%|██████▊ | Scoring GeneralizingEstimator : 829/1225 [00:01<00:00, 468.92it/s]
69%|██████▉ | Scoring GeneralizingEstimator : 845/1225 [00:01<00:00, 468.55it/s]
70%|███████ | Scoring GeneralizingEstimator : 862/1225 [00:01<00:00, 470.30it/s]
72%|███████▏ | Scoring GeneralizingEstimator : 878/1225 [00:01<00:00, 470.42it/s]
73%|███████▎ | Scoring GeneralizingEstimator : 895/1225 [00:01<00:00, 472.08it/s]
74%|███████▍ | Scoring GeneralizingEstimator : 911/1225 [00:01<00:00, 472.11it/s]
76%|███████▌ | Scoring GeneralizingEstimator : 926/1225 [00:02<00:00, 470.66it/s]
77%|███████▋ | Scoring GeneralizingEstimator : 942/1225 [00:02<00:00, 470.81it/s]
78%|███████▊ | Scoring GeneralizingEstimator : 958/1225 [00:02<00:00, 470.95it/s]
80%|███████▉ | Scoring GeneralizingEstimator : 975/1225 [00:02<00:00, 472.42it/s]
81%|████████ | Scoring GeneralizingEstimator : 991/1225 [00:02<00:00, 472.40it/s]
82%|████████▏ | Scoring GeneralizingEstimator : 1007/1225 [00:02<00:00, 472.39it/s]
84%|████████▎ | Scoring GeneralizingEstimator : 1023/1225 [00:02<00:00, 472.39it/s]
85%|████████▍ | Scoring GeneralizingEstimator : 1038/1225 [00:02<00:00, 470.87it/s]
86%|████████▌ | Scoring GeneralizingEstimator : 1055/1225 [00:02<00:00, 472.59it/s]
87%|████████▋ | Scoring GeneralizingEstimator : 1071/1225 [00:02<00:00, 472.68it/s]
89%|████████▊ | Scoring GeneralizingEstimator : 1087/1225 [00:02<00:00, 472.60it/s]
90%|█████████ | Scoring GeneralizingEstimator : 1104/1225 [00:02<00:00, 474.16it/s]
91%|█████████▏| Scoring GeneralizingEstimator : 1120/1225 [00:02<00:00, 474.17it/s]
93%|█████████▎| Scoring GeneralizingEstimator : 1137/1225 [00:02<00:00, 475.60it/s]
94%|█████████▍| Scoring GeneralizingEstimator : 1153/1225 [00:02<00:00, 475.21it/s]
96%|█████████▌| Scoring GeneralizingEstimator : 1170/1225 [00:02<00:00, 476.69it/s]
97%|█████████▋| Scoring GeneralizingEstimator : 1187/1225 [00:02<00:00, 477.95it/s]
98%|█████████▊| Scoring GeneralizingEstimator : 1203/1225 [00:02<00:00, 477.39it/s]
100%|█████████▉| Scoring GeneralizingEstimator : 1219/1225 [00:02<00:00, 476.86it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00, 467.27it/s]
Plot
fig, ax = plt.subplots(constrained_layout=True)
im = ax.matshow(
scores,
vmin=0,
vmax=1.0,
cmap="RdBu_r",
origin="lower",
extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
References#
- 1
Jean-Rémi King and Stanislas Dehaene. Characterizing the dynamics of mental representations: the temporal generalization method. Trends in Cognitive Sciences, 18(4):203–210, 2014. doi:10.1016/j.tics.2014.01.002.
Total running time of the script: (0 minutes 7.273 seconds)
Estimated memory usage: 129 MB