mne.pick_types#
- mne.pick_types(info, meg=False, eeg=False, stim=False, eog=False, ecg=False, emg=False, ref_meg='auto', *, misc=False, resp=False, chpi=False, exci=False, ias=False, syst=False, seeg=False, dipole=False, gof=False, bio=False, ecog=False, fnirs=False, csd=False, dbs=False, temperature=False, gsr=False, eyetrack=False, include=(), exclude='bads', selection=None)[source]#
Pick channels by type and names.
- Parameters
- info
mne.Info
The
mne.Info
object with information about the sensors and methods of measurement.- meg
bool
|str
If True include MEG channels. If string it can be ‘mag’, ‘grad’, ‘planar1’ or ‘planar2’ to select only magnetometers, all gradiometers, or a specific type of gradiometer.
- eeg
bool
If True include EEG channels.
- stim
bool
If True include stimulus channels.
- eog
bool
If True include EOG channels.
- ecg
bool
If True include ECG channels.
- emg
bool
If True include EMG channels.
- ref_meg
bool
|str
If True include CTF / 4D reference channels. If ‘auto’, reference channels are included if compensations are present and
meg
is not False. Can also be the string options for themeg
parameter.- misc
bool
If True include miscellaneous analog channels.
- resp
bool
If
True
include respiratory channels.- chpi
bool
If True include continuous HPI coil channels.
- exci
bool
Flux excitation channel used to be a stimulus channel.
- ias
bool
Internal Active Shielding data (maybe on Triux only).
- syst
bool
System status channel information (on Triux systems only).
- seeg
bool
Stereotactic EEG channels.
- dipole
bool
Dipole time course channels.
- gof
bool
Dipole goodness of fit channels.
- bio
bool
Bio channels.
- ecog
bool
Electrocorticography channels.
- fnirs
bool
|str
Functional near-infrared spectroscopy channels. If True include all fNIRS channels. If False (default) include none. If string it can be ‘hbo’ (to include channels measuring oxyhemoglobin) or ‘hbr’ (to include channels measuring deoxyhemoglobin).
- csd
bool
EEG-CSD channels.
- dbs
bool
Deep brain stimulation channels.
- temperature
bool
Temperature channels.
- gsr
bool
Galvanic skin response channels.
- eyetrack
bool
|str
Eyetracking channels. If True include all eyetracking channels. If False (default) include none. If string it can be ‘eyegaze’ (to include eye position channels) or ‘pupil’ (to include pupil-size channels).
- include
list
ofstr
List of additional channels to include. If empty do not include any.
- exclude
list
ofstr
|str
List of channels to exclude. If ‘bads’ (default), exclude channels in
info['bads']
.- selection
list
ofstr
Restrict sensor channels (MEG, EEG, etc.) to this list of channel names.
- info
- Returns
Examples using mne.pick_types
#

Preprocessing functional near-infrared spectroscopy (fNIRS) data

Preprocessing optically pumped magnetometer (OPM) MEG data

Frequency-tagging: Basic analysis of an SSVEP/vSSR dataset

Non-parametric 1 sample cluster statistic on single trial power

Non-parametric between conditions cluster statistic on single trial power

Mass-univariate twoway repeated measures ANOVA on single trial power

Spatiotemporal permutation F-test on full sensor data

Permutation t-test on source data with spatio-temporal clustering

Repeated measures ANOVA on source data with spatio-temporal clustering

Cortical Signal Suppression (CSS) for removal of cortical signals

Define target events based on time lag, plot evoked response

Compute Power Spectral Density of inverse solution from single epochs

Compute power and phase lock in label of the source space

Compute source power spectral density (PSD) in a label

Compute induced power in the source space with dSPM

Permutation F-test on sensor data with 1D cluster level

Motor imagery decoding from EEG data using the Common Spatial Pattern (CSP)

Decoding sensor space data with generalization across time and conditions

Analysis of evoked response using ICA and PCA reduction techniques

Compute MNE-dSPM inverse solution on single epochs

Compute evoked ERS source power using DICS, LCMV beamformer, and dSPM