Decoding sensor space data with generalization across time and conditions#

This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.

# Authors: Jean-Remi King <jeanremi.king@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator

print(__doc__)

# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads")  # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin")  # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
    "Auditory/Left": 1,
    "Auditory/Right": 2,
    "Visual/Left": 3,
    "Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
    raw,
    events,
    event_id=event_id,
    tmin=tmin,
    tmax=tmax,
    proj=True,
    picks=picks,
    baseline=None,
    preload=True,
    reject=dict(mag=5e-12),
    decim=decim,
    verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    0.2s
[Parallel(n_jobs=1)]: Done 287 tasks      | elapsed:    0.4s

We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.

clf = make_pipeline(
    StandardScaler(),
    LogisticRegression(solver="liblinear"),  # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)

# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
  0%|          | Fitting GeneralizingEstimator : 0/35 [00:00<?,       ?it/s]
  6%|▌         | Fitting GeneralizingEstimator : 2/35 [00:00<00:00,   57.10it/s]
 11%|█▏        | Fitting GeneralizingEstimator : 4/35 [00:00<00:00,   58.08it/s]
 17%|█▋        | Fitting GeneralizingEstimator : 6/35 [00:00<00:00,   58.39it/s]
 23%|██▎       | Fitting GeneralizingEstimator : 8/35 [00:00<00:00,   58.50it/s]
 34%|███▍      | Fitting GeneralizingEstimator : 12/35 [00:00<00:00,   71.54it/s]
 43%|████▎     | Fitting GeneralizingEstimator : 15/35 [00:00<00:00,   74.73it/s]
 51%|█████▏    | Fitting GeneralizingEstimator : 18/35 [00:00<00:00,   76.70it/s]
 57%|█████▋    | Fitting GeneralizingEstimator : 20/35 [00:00<00:00,   74.06it/s]
 66%|██████▌   | Fitting GeneralizingEstimator : 23/35 [00:00<00:00,   75.99it/s]
 74%|███████▍  | Fitting GeneralizingEstimator : 26/35 [00:00<00:00,   77.51it/s]
 80%|████████  | Fitting GeneralizingEstimator : 28/35 [00:00<00:00,   75.41it/s]
 89%|████████▊ | Fitting GeneralizingEstimator : 31/35 [00:00<00:00,   76.67it/s]
 94%|█████████▍| Fitting GeneralizingEstimator : 33/35 [00:00<00:00,   74.84it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   76.82it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   75.77it/s]

Score on the epochs where the stimulus was presented to the right.

scores = time_gen.score(
    X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
  0%|          | Scoring GeneralizingEstimator : 0/1225 [00:00<?,       ?it/s]
  1%|          | Scoring GeneralizingEstimator : 11/1225 [00:00<00:03,  321.99it/s]
  2%|▏         | Scoring GeneralizingEstimator : 25/1225 [00:00<00:03,  367.45it/s]
  3%|▎         | Scoring GeneralizingEstimator : 39/1225 [00:00<00:03,  383.63it/s]
  4%|▍         | Scoring GeneralizingEstimator : 52/1225 [00:00<00:03,  383.62it/s]
  5%|▍         | Scoring GeneralizingEstimator : 61/1225 [00:00<00:03,  357.69it/s]
  6%|▌         | Scoring GeneralizingEstimator : 70/1225 [00:00<00:03,  340.59it/s]
  7%|▋         | Scoring GeneralizingEstimator : 80/1225 [00:00<00:03,  333.24it/s]
  8%|▊         | Scoring GeneralizingEstimator : 93/1225 [00:00<00:03,  340.80it/s]
  9%|▊         | Scoring GeneralizingEstimator : 106/1225 [00:00<00:03,  346.63it/s]
 10%|▉         | Scoring GeneralizingEstimator : 121/1225 [00:00<00:03,  358.55it/s]
 11%|█         | Scoring GeneralizingEstimator : 135/1225 [00:00<00:02,  364.91it/s]
 12%|█▏        | Scoring GeneralizingEstimator : 149/1225 [00:00<00:02,  370.19it/s]
 13%|█▎        | Scoring GeneralizingEstimator : 164/1225 [00:00<00:02,  377.57it/s]
 15%|█▍        | Scoring GeneralizingEstimator : 178/1225 [00:00<00:02,  380.98it/s]
 16%|█▌        | Scoring GeneralizingEstimator : 193/1225 [00:00<00:02,  386.72it/s]
 17%|█▋        | Scoring GeneralizingEstimator : 208/1225 [00:00<00:02,  391.23it/s]
 18%|█▊        | Scoring GeneralizingEstimator : 221/1225 [00:00<00:02,  390.31it/s]
 19%|█▉        | Scoring GeneralizingEstimator : 236/1225 [00:00<00:02,  394.75it/s]
 20%|██        | Scoring GeneralizingEstimator : 251/1225 [00:00<00:02,  398.71it/s]
 22%|██▏       | Scoring GeneralizingEstimator : 264/1225 [00:00<00:02,  397.32it/s]
 23%|██▎       | Scoring GeneralizingEstimator : 279/1225 [00:00<00:02,  400.69it/s]
 24%|██▍       | Scoring GeneralizingEstimator : 294/1225 [00:00<00:02,  403.31it/s]
 25%|██▌       | Scoring GeneralizingEstimator : 308/1225 [00:00<00:02,  404.10it/s]
 26%|██▋       | Scoring GeneralizingEstimator : 323/1225 [00:00<00:02,  406.96it/s]
 28%|██▊       | Scoring GeneralizingEstimator : 337/1225 [00:00<00:02,  407.23it/s]
 29%|██▊       | Scoring GeneralizingEstimator : 351/1225 [00:00<00:02,  407.60it/s]
 30%|██▉       | Scoring GeneralizingEstimator : 366/1225 [00:00<00:02,  409.83it/s]
 31%|███       | Scoring GeneralizingEstimator : 381/1225 [00:00<00:02,  411.72it/s]
 32%|███▏      | Scoring GeneralizingEstimator : 395/1225 [00:00<00:02,  411.77it/s]
 33%|███▎      | Scoring GeneralizingEstimator : 410/1225 [00:01<00:01,  413.71it/s]
 35%|███▍      | Scoring GeneralizingEstimator : 424/1225 [00:01<00:01,  413.63it/s]
 36%|███▌      | Scoring GeneralizingEstimator : 438/1225 [00:01<00:01,  413.48it/s]
 37%|███▋      | Scoring GeneralizingEstimator : 452/1225 [00:01<00:01,  413.45it/s]
 38%|███▊      | Scoring GeneralizingEstimator : 466/1225 [00:01<00:01,  413.53it/s]
 39%|███▉      | Scoring GeneralizingEstimator : 480/1225 [00:01<00:01,  413.62it/s]
 40%|████      | Scoring GeneralizingEstimator : 493/1225 [00:01<00:01,  411.80it/s]
 41%|████▏     | Scoring GeneralizingEstimator : 508/1225 [00:01<00:01,  413.66it/s]
 43%|████▎     | Scoring GeneralizingEstimator : 523/1225 [00:01<00:01,  415.41it/s]
 44%|████▍     | Scoring GeneralizingEstimator : 537/1225 [00:01<00:01,  415.36it/s]
 45%|████▍     | Scoring GeneralizingEstimator : 551/1225 [00:01<00:01,  415.26it/s]
 46%|████▌     | Scoring GeneralizingEstimator : 566/1225 [00:01<00:01,  416.75it/s]
 47%|████▋     | Scoring GeneralizingEstimator : 580/1225 [00:01<00:01,  416.53it/s]
 49%|████▊     | Scoring GeneralizingEstimator : 595/1225 [00:01<00:01,  417.89it/s]
 50%|████▉     | Scoring GeneralizingEstimator : 608/1225 [00:01<00:01,  416.03it/s]
 51%|█████     | Scoring GeneralizingEstimator : 622/1225 [00:01<00:01,  415.53it/s]
 52%|█████▏    | Scoring GeneralizingEstimator : 637/1225 [00:01<00:01,  417.06it/s]
 53%|█████▎    | Scoring GeneralizingEstimator : 652/1225 [00:01<00:01,  418.38it/s]
 54%|█████▍    | Scoring GeneralizingEstimator : 667/1225 [00:01<00:01,  419.58it/s]
 56%|█████▌    | Scoring GeneralizingEstimator : 682/1225 [00:01<00:01,  420.56it/s]
 57%|█████▋    | Scoring GeneralizingEstimator : 696/1225 [00:01<00:01,  419.62it/s]
 58%|█████▊    | Scoring GeneralizingEstimator : 710/1225 [00:01<00:01,  419.28it/s]
 59%|█████▉    | Scoring GeneralizingEstimator : 722/1225 [00:01<00:01,  415.71it/s]
 60%|██████    | Scoring GeneralizingEstimator : 735/1225 [00:01<00:01,  413.77it/s]
 61%|██████    | Scoring GeneralizingEstimator : 748/1225 [00:01<00:01,  412.26it/s]
 62%|██████▏   | Scoring GeneralizingEstimator : 761/1225 [00:01<00:01,  410.78it/s]
 63%|██████▎   | Scoring GeneralizingEstimator : 774/1225 [00:01<00:01,  409.13it/s]
 64%|██████▍   | Scoring GeneralizingEstimator : 789/1225 [00:01<00:01,  411.00it/s]
 65%|██████▌   | Scoring GeneralizingEstimator : 802/1225 [00:01<00:01,  409.29it/s]
 67%|██████▋   | Scoring GeneralizingEstimator : 816/1225 [00:02<00:00,  409.52it/s]
 68%|██████▊   | Scoring GeneralizingEstimator : 829/1225 [00:02<00:00,  408.09it/s]
 69%|██████▊   | Scoring GeneralizingEstimator : 841/1225 [00:02<00:00,  405.28it/s]
 70%|██████▉   | Scoring GeneralizingEstimator : 853/1225 [00:02<00:00,  402.71it/s]
 71%|███████   | Scoring GeneralizingEstimator : 865/1225 [00:02<00:00,  400.03it/s]
 72%|███████▏  | Scoring GeneralizingEstimator : 879/1225 [00:02<00:00,  400.56it/s]
 73%|███████▎  | Scoring GeneralizingEstimator : 892/1225 [00:02<00:00,  399.64it/s]
 74%|███████▍  | Scoring GeneralizingEstimator : 906/1225 [00:02<00:00,  400.13it/s]
 75%|███████▌  | Scoring GeneralizingEstimator : 920/1225 [00:02<00:00,  400.89it/s]
 76%|███████▌  | Scoring GeneralizingEstimator : 934/1225 [00:02<00:00,  401.49it/s]
 77%|███████▋  | Scoring GeneralizingEstimator : 948/1225 [00:02<00:00,  402.18it/s]
 79%|███████▊  | Scoring GeneralizingEstimator : 963/1225 [00:02<00:00,  404.31it/s]
 80%|███████▉  | Scoring GeneralizingEstimator : 978/1225 [00:02<00:00,  406.18it/s]
 81%|████████  | Scoring GeneralizingEstimator : 992/1225 [00:02<00:00,  406.31it/s]
 82%|████████▏ | Scoring GeneralizingEstimator : 1006/1225 [00:02<00:00,  406.69it/s]
 83%|████████▎ | Scoring GeneralizingEstimator : 1019/1225 [00:02<00:00,  405.26it/s]
 84%|████████▍ | Scoring GeneralizingEstimator : 1033/1225 [00:02<00:00,  405.76it/s]
 85%|████████▌ | Scoring GeneralizingEstimator : 1046/1225 [00:02<00:00,  404.70it/s]
 86%|████████▋ | Scoring GeneralizingEstimator : 1058/1225 [00:02<00:00,  401.89it/s]
 88%|████████▊ | Scoring GeneralizingEstimator : 1073/1225 [00:02<00:00,  403.99it/s]
 89%|████████▊ | Scoring GeneralizingEstimator : 1086/1225 [00:02<00:00,  402.81it/s]
 90%|████████▉ | Scoring GeneralizingEstimator : 1100/1225 [00:02<00:00,  403.37it/s]
 91%|█████████ | Scoring GeneralizingEstimator : 1112/1225 [00:02<00:00,  400.96it/s]
 92%|█████████▏| Scoring GeneralizingEstimator : 1124/1225 [00:02<00:00,  398.61it/s]
 93%|█████████▎| Scoring GeneralizingEstimator : 1136/1225 [00:02<00:00,  396.39it/s]
 94%|█████████▎| Scoring GeneralizingEstimator : 1146/1225 [00:02<00:00,  391.13it/s]
 94%|█████████▍| Scoring GeneralizingEstimator : 1157/1225 [00:02<00:00,  387.68it/s]
 95%|█████████▌| Scoring GeneralizingEstimator : 1168/1225 [00:02<00:00,  384.44it/s]
 96%|█████████▌| Scoring GeneralizingEstimator : 1179/1225 [00:02<00:00,  381.41it/s]
 97%|█████████▋| Scoring GeneralizingEstimator : 1189/1225 [00:02<00:00,  376.88it/s]
 98%|█████████▊| Scoring GeneralizingEstimator : 1202/1225 [00:03<00:00,  377.24it/s]
 99%|█████████▉| Scoring GeneralizingEstimator : 1213/1225 [00:03<00:00,  374.46it/s]
100%|█████████▉| Scoring GeneralizingEstimator : 1224/1225 [00:03<00:00,  371.87it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00,  395.76it/s]

Plot

fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
    scores,
    vmin=0,
    vmax=1.0,
    cmap="RdBu_r",
    origin="lower",
    extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
    'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
Generalization across time and condition

References#

Total running time of the script: (0 minutes 8.135 seconds)

Estimated memory usage: 32 MB

Gallery generated by Sphinx-Gallery