Note
Go to the end to download the full example code.
Plot a cortical parcellation#
In this example, we download the HCP-MMP1.0 parcellation
[1] and show it on fsaverage
.
We will also download the customized 448-label aparc
parcellation from [2].
Note
The HCP-MMP dataset has license terms restricting its use. Of particular relevance:
“I will acknowledge the use of WU-Minn HCP data and data derived from WU-Minn HCP data when publicly presenting any results or algorithms that benefitted from their use.”
# Author: Eric Larson <larson.eric.d@gmail.com>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import mne
Brain = mne.viz.get_brain_class()
subjects_dir = mne.datasets.sample.data_path() / "subjects"
mne.datasets.fetch_hcp_mmp_parcellation(subjects_dir=subjects_dir, verbose=True)
mne.datasets.fetch_aparc_sub_parcellation(subjects_dir=subjects_dir, verbose=True)
labels = mne.read_labels_from_annot(
"fsaverage", "HCPMMP1", "lh", subjects_dir=subjects_dir
)
brain = Brain(
"fsaverage",
"lh",
"inflated",
subjects_dir=subjects_dir,
cortex="low_contrast",
background="white",
size=(800, 600),
)
brain.add_annotation("HCPMMP1")
aud_label = [label for label in labels if label.name == "L_A1_ROI-lh"][0]
brain.add_label(aud_label, borders=False)
Reading labels from parcellation...
read 181 labels from /home/circleci/mne_data/MNE-sample-data/subjects/fsaverage/label/lh.HCPMMP1.annot
We can also plot a combined set of labels (23 per hemisphere).
brain = Brain(
"fsaverage",
"lh",
"inflated",
subjects_dir=subjects_dir,
cortex="low_contrast",
background="white",
size=(800, 600),
)
brain.add_annotation("HCPMMP1_combined")
We can add another custom parcellation
brain = Brain(
"fsaverage",
"lh",
"inflated",
subjects_dir=subjects_dir,
cortex="low_contrast",
background="white",
size=(800, 600),
)
brain.add_annotation("aparc_sub")
References#
Total running time of the script: (0 minutes 8.451 seconds)
Estimated memory usage: 22 MB