Sensitivity map of SSP projections#

This example shows the sources that have a forward field similar to the first SSP vector correcting for ECG.

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause
import matplotlib.pyplot as plt

from mne import read_forward_solution, read_proj, sensitivity_map

from mne.datasets import sample

print(__doc__)

data_path = sample.data_path()

subjects_dir = data_path / 'subjects'
meg_path = data_path / 'MEG' / 'sample'
fname = meg_path / 'sample_audvis-meg-eeg-oct-6-fwd.fif'
ecg_fname = meg_path / 'sample_audvis_ecg-proj.fif'

fwd = read_forward_solution(fname)

projs = read_proj(ecg_fname)
# take only one projection per channel type
projs = projs[::2]

# Compute sensitivity map
ssp_ecg_map = sensitivity_map(fwd, ch_type='grad', projs=projs, mode='angle')
Reading forward solution from /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif...
    Reading a source space...
    Computing patch statistics...
    Patch information added...
    Distance information added...
    [done]
    Reading a source space...
    Computing patch statistics...
    Patch information added...
    Distance information added...
    [done]
    2 source spaces read
    Desired named matrix (kind = 3523) not available
    Read MEG forward solution (7498 sources, 306 channels, free orientations)
    Desired named matrix (kind = 3523) not available
    Read EEG forward solution (7498 sources, 60 channels, free orientations)
    Forward solutions combined: MEG, EEG
    Source spaces transformed to the forward solution coordinate frame
    Read a total of 6 projection items:
        ECG-planar-999--0.200-0.400-PCA-01 (1 x 203)  idle
        ECG-planar-999--0.200-0.400-PCA-02 (1 x 203)  idle
        ECG-axial-999--0.200-0.400-PCA-01 (1 x 102)  idle
        ECG-axial-999--0.200-0.400-PCA-02 (1 x 102)  idle
        ECG-eeg-999--0.200-0.400-PCA-01 (1 x 59)  idle
        ECG-eeg-999--0.200-0.400-PCA-02 (1 x 59)  idle
    204 out of 366 channels remain after picking

Show sensitivity map

plt.hist(ssp_ecg_map.data.ravel())
plt.show()

args = dict(clim=dict(kind='value', lims=(0.2, 0.6, 1.)), smoothing_steps=7,
            hemi='rh', subjects_dir=subjects_dir)
ssp_ecg_map.plot(subject='sample', time_label='ECG SSP sensitivity', **args)
ssp projs sensitivity mapssp projs sensitivity map

Total running time of the script: ( 0 minutes 5.647 seconds)

Estimated memory usage: 126 MB

Gallery generated by Sphinx-Gallery