mne.convert_forward_solution#
- mne.convert_forward_solution(fwd, surf_ori=False, force_fixed=False, copy=True, use_cps=True, verbose=None)[source]#
Convert forward solution between different source orientations.
- Parameters:
- fwd
Forward
The forward solution to modify.
- surf_ori
bool
, optional (defaultFalse
) Use surface-based source coordinate system? Note that force_fixed=True implies surf_ori=True.
- force_fixed
bool
, optional (defaultFalse
) If True, force fixed source orientation mode.
- copy
bool
Whether to return a new instance or modify in place.
- use_cps
bool
Whether to use cortical patch statistics to define normal orientations for surfaces (default True).
- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- fwd
- Returns:
- fwd
Forward
The modified forward solution.
- fwd
Examples using mne.convert_forward_solution
#

The role of dipole orientations in distributed source localization

Cortical Signal Suppression (CSS) for removal of cortical signals

Visualize source leakage among labels using a circular graph

Plot point-spread functions (PSFs) and cross-talk functions (CTFs)

Compute spatial resolution metrics in source space

Compute spatial resolution metrics to compare MEG with EEG+MEG