mne.datasets.eegbci.load_data#
- mne.datasets.eegbci.load_data(subject, runs, path=None, force_update=False, update_path=None, base_url='https://physionet.org/files/eegmmidb/1.0.0/', verbose=None)[source]#
Get paths to local copies of EEGBCI dataset files.
This will fetch data for the EEGBCI dataset [1], which is also available at PhysioNet [2].
- Parameters:
- subject
int
The subject to use. Can be in the range of 1-109 (inclusive).
- runs
int
|list
ofint
The runs to use (see Notes for details).
- path
None
| path-like Location of where to look for the EEGBCI data. If
None
, the environment variable or config parameterMNE_DATASETS_EEGBCI_PATH
is used. If neither exists, the~/mne_data
directory is used. If the EEGBCI dataset is not found under the given path, the data will be automatically downloaded to the specified folder.- force_updatebool
Force update of the dataset even if a local copy exists.
- update_pathbool |
None
If
True
, setMNE_DATASETS_EEGBCI_PATH
in the configuration to the given path. IfNone
, the user is prompted.- base_url
str
The URL root for the data.
- verbosebool |
str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- subject
- Returns:
- paths
list
List of local data paths of the given type.
- paths
Notes
The run numbers correspond to:
run
task
1
Baseline, eyes open
2
Baseline, eyes closed
3, 7, 11
Motor execution: left vs right hand
4, 8, 12
Motor imagery: left vs right hand
5, 9, 13
Motor execution: hands vs feet
6, 10, 14
Motor imagery: hands vs feet
For example, one could do:
>>> from mne.datasets import eegbci >>> eegbci.load_data(1, [6, 10, 14], "~/datasets")
This would download runs 6, 10, and 14 (hand/foot motor imagery) runs from subject 1 in the EEGBCI dataset to “~/datasets” and prompt the user to store this path in the config (if it does not already exist).
References