mne.datasets.eegbci.load_data#

mne.datasets.eegbci.load_data(subject, runs, path=None, force_update=False, update_path=None, base_url='https://physionet.org/files/eegmmidb/1.0.0/', verbose=None)[source]#

Get paths to local copies of EEGBCI dataset files.

This will fetch data for the EEGBCI dataset [1], which is also available at PhysioNet [2].

Parameters:
subjectint

The subject to use. Can be in the range of 1-109 (inclusive).

runsint | list of int

The runs to use (see Notes for details).

pathNone | path-like

Location of where to look for the EEGBCI data. If None, the environment variable or config parameter MNE_DATASETS_EEGBCI_PATH is used. If neither exists, the ~/mne_data directory is used. If the EEGBCI dataset is not found under the given path, the data will be automatically downloaded to the specified folder.

force_updatebool

Force update of the dataset even if a local copy exists.

update_pathbool | None

If True, set MNE_DATASETS_EEGBCI_PATH in the configuration to the given path. If None, the user is prompted.

base_urlstr

The URL root for the data.

verbosebool | str | int | None

Control verbosity of the logging output. If None, use the default verbosity level. See the logging documentation and mne.verbose() for details. Should only be passed as a keyword argument.

Returns:
pathslist

List of local data paths of the given type.

Notes

The run numbers correspond to:

run

task

1

Baseline, eyes open

2

Baseline, eyes closed

3, 7, 11

Motor execution: left vs right hand

4, 8, 12

Motor imagery: left vs right hand

5, 9, 13

Motor execution: hands vs feet

6, 10, 14

Motor imagery: hands vs feet

For example, one could do:

>>> from mne.datasets import eegbci
>>> eegbci.load_data(1, [6, 10, 14], "~/datasets") 

This would download runs 6, 10, and 14 (hand/foot motor imagery) runs from subject 1 in the EEGBCI dataset to “~/datasets” and prompt the user to store this path in the config (if it does not already exist).

References