mne.viz.plot_arrowmap#
- mne.viz.plot_arrowmap(data, info_from, info_to=None, scale=3e-10, vlim=(None, None), cnorm=None, cmap=None, sensors=True, res=64, axes=None, show_names=False, mask=None, mask_params=None, outlines='head', contours=6, image_interp='cubic', show=True, onselect=None, extrapolate='auto', sphere=None)[source]#
Plot arrow map.
Compute arrowmaps, based upon the Hosaka-Cohen transformation [1], these arrows represents an estimation of the current flow underneath the MEG sensors. They are a poor man’s MNE.
Since planar gradiometers takes gradients along latitude and longitude, they need to be projected to the flattened manifold span by magnetometer or radial gradiometers before taking the gradients in the 2D Cartesian coordinate system for visualization on the 2D topoplot. You can use the
info_from
andinfo_to
parameters to interpolate from gradiometer data to magnetometer data.- Parameters:
- data
array
, shape (n_channels,) The data values to plot.
- info_frominstance of
Info
The measurement info from data to interpolate from.
- info_toinstance of
Info
|None
The measurement info to interpolate to. If None, it is assumed to be the same as info_from.
- scale
float
, default 3e-10 To scale the arrows.
- vlim
tuple
of length 2 Colormap limits to use. If a
tuple
of floats, specifies the lower and upper bounds of the colormap (in that order); providingNone
for either entry will set the corresponding boundary at the min/max of the data. Defaults to(None, None)
.New in v1.2.
- cnorm
matplotlib.colors.Normalize
|None
How to normalize the colormap. If
None
, standard linear normalization is performed. If notNone
,vmin
andvmax
will be ignored. See Matplotlib docs for more details on colormap normalization, and the ERDs example for an example of its use.New in v1.2.
- cmapmatplotlib colormap |
None
Colormap to use. If None, ‘Reds’ is used for all positive data, otherwise defaults to ‘RdBu_r’.
- sensorsbool |
str
Whether to add markers for sensor locations. If
str
, should be a valid matplotlib format string (e.g.,'r+'
for red plusses, see the Notes section ofplot()
). IfTrue
(the default), black circles will be used.- res
int
The resolution of the topomap image (number of pixels along each side).
- axesinstance of
Axes
|None
The axes to plot to. If
None
, a newFigure
will be created. Default isNone
.- show_namesbool |
callable()
If
True
, show channel names next to each sensor marker. If callable, channel names will be formatted using the callable; e.g., to delete the prefix ‘MEG ‘ from all channel names, pass the functionlambda x: x.replace('MEG ', '')
. Ifmask
is notNone
, only non-masked sensor names will be shown. IfTrue
, a list of names must be provided (seenames
keyword).- mask
ndarray
of bool, shape (n_channels,) |None
Array indicating channel(s) to highlight with a distinct plotting style. Array elements set to
True
will be plotted with the parameters given inmask_params
. Defaults toNone
, equivalent to an array of allFalse
elements.- mask_params
dict
|None
Additional plotting parameters for plotting significant sensors. Default (None) equals:
dict(marker='o', markerfacecolor='w', markeredgecolor='k', linewidth=0, markersize=4)
- outlines‘head’ |
dict
|None
The outlines to be drawn. If ‘head’, the default head scheme will be drawn. If dict, each key refers to a tuple of x and y positions, the values in ‘mask_pos’ will serve as image mask. Alternatively, a matplotlib patch object can be passed for advanced masking options, either directly or as a function that returns patches (required for multi-axis plots). If None, nothing will be drawn. Defaults to ‘head’.
- contours
int
| array_like The number of contour lines to draw. If
0
, no contours will be drawn. If a positive integer, that number of contour levels are chosen using the matplotlib tick locator (may sometimes be inaccurate, use array for accuracy). If array-like, the array values are used as the contour levels. The values should be in µV for EEG, fT for magnetometers and fT/m for gradiometers. Ifcolorbar=True
, the colorbar will have ticks corresponding to the contour levels. Default is6
.- image_interp
str
The image interpolation to be used. Options are
'cubic'
(default) to usescipy.interpolate.CloughTocher2DInterpolator
,'nearest'
to usescipy.spatial.Voronoi
or'linear'
to usescipy.interpolate.LinearNDInterpolator
.- showbool
Show the figure if
True
.- onselect
callable()
|None
Handle for a function that is called when the user selects a set of channels by rectangle selection (matplotlib
RectangleSelector
). If None interactive selection is disabled. Defaults to None.- extrapolate
str
Options:
'box'
Extrapolate to four points placed to form a square encompassing all data points, where each side of the square is three times the range of the data in the respective dimension.
'local'
(default for MEG sensors)Extrapolate only to nearby points (approximately to points closer than median inter-electrode distance). This will also set the mask to be polygonal based on the convex hull of the sensors.
'head'
(default for non-MEG sensors)Extrapolate out to the edges of the clipping circle. This will be on the head circle when the sensors are contained within the head circle, but it can extend beyond the head when sensors are plotted outside the head circle.
New in v0.18.
Changed in version 0.21:
The default was changed to
'local'
for MEG sensors.'local'
was changed to use a convex hull mask'head'
was changed to extrapolate out to the clipping circle.
- sphere
float
| array_like | instance ofConductorModel
|None
| ‘auto’ | ‘eeglab’ The sphere parameters to use for the head outline. Can be array-like of shape (4,) to give the X/Y/Z origin and radius in meters, or a single float to give just the radius (origin assumed 0, 0, 0). Can also be an instance of a spherical
ConductorModel
to use the origin and radius from that object. If'auto'
the sphere is fit to digitization points. If'eeglab'
the head circle is defined by EEG electrodes'Fpz'
,'Oz'
,'T7'
, and'T8'
(if'Fpz'
is not present, it will be approximated from the coordinates of'Oz'
).None
(the default) is equivalent to'auto'
when enough extra digitization points are available, and (0, 0, 0, 0.095) otherwise.New in v0.20.
Changed in version 1.1: Added
'eeglab'
option.
- data
- Returns:
- fig
matplotlib.figure.Figure
The Figure of the plot.
- fig
Notes
New in v0.17.
References
Examples using mne.viz.plot_arrowmap
#
Plotting topographic arrowmaps of evoked data