mne_connectivity.envelope_correlation#
- mne_connectivity.envelope_correlation(data, names=None, orthogonalize='pairwise', log=False, absolute=True, verbose=None)[source]#
Compute the envelope correlation.
- Parameters:
- dataarray_like, shape (n_epochs, n_signals, n_times) |
Epochs| generator The data from which to compute connectivity. The array-like object can also be a list/generator of arrays, each with shape
(n_signals, n_times), or amne.SourceEstimateobject (andstc.datawill be used). If float data, the Hilbert transform will be applied; if complex data, it is assumed the Hilbert has already been applied.- namesarray_like |
None A list of names associated with the signals in
data. IfNone, will be a list of indices of the number of nodes.- orthogonalize
'pairwise'|False Whether to orthogonalize with the pairwise method or not. Defaults to
'pairwise'. Note that whenFalse, the correlation matrix will not be returned with absolute values.- logbool
If
True(defaultFalse), square and take the log before orthogonalizing envelopes or computing correlations.- absolutebool
If
True(default), then take the absolute value of correlation coefficients before making each epoch’s correlation matrix symmetric (and thus before combining matrices across epochs). Only used whenorthogonalize='pairwise'.- verbosebool |
str|int|None Control verbosity of the logging output. If
None, use the default verbosity level. See the logging documentation andmne.verbose()for details. Should only be passed as a keyword argument.
- dataarray_like, shape (n_epochs, n_signals, n_times) |
- Returns:
- corrinstance of
EpochTemporalConnectivity The pairwise orthogonal envelope correlations. This matrix is symmetric. The array will have three dimensions, the first of which is
n_epochs. The data shape is(n_epochs, (n_nodes + 1) * n_nodes / 2).
- corrinstance of
Notes
This function computes the power envelope correlation between orthogonalized signals [1][2].
If you would like to combine epochs after the fact using some function over the epochs axis, see the
combine()method of theEpochTemporalConnectivityclass.References
Examples using mne_connectivity.envelope_correlation#
Compute envelope correlations in volume source space