mne.decoding.GeneralizingEstimator¶
- class mne.decoding.GeneralizingEstimator(base_estimator, scoring=None, n_jobs=1, verbose=None)[source]¶
- Generalization Light. - Fit a search-light along the last dimension and use them to apply a systematic cross-tasks generalization. - Parameters
- base_estimatorobject
- The base estimator to iteratively fit on a subset of the dataset. 
- scoringcallable()|str|None
- Score function (or loss function) with signature - score_func(y, y_pred, **kwargs). Note that the “predict” method is automatically identified if scoring is a string (e.g.- scoring='roc_auc'calls- predict_proba), but is not automatically set if- scoringis a callable (e.g.- scoring=sklearn.metrics.roc_auc_score).
- n_jobsint
- The number of jobs to run in parallel (default - 1). If- -1, it is set to the number of CPU cores. Requires the- joblibpackage.
- verbosebool | str|int|None
- Control verbosity of the logging output. If - None, use the default verbosity level. See the logging documentation and- mne.verbose()for details. Should only be passed as a keyword argument.
 
- Attributes
- classes_
 
 - Methods - __hash__(/)- Return hash(self). - Estimate distances of each data slice to all hyperplanes. - fit(X, y, **fit_params)- Fit a series of independent estimators to the dataset. - fit_transform(X, y, **fit_params)- Fit and transform a series of independent estimators to the dataset. - get_params([deep])- Get parameters for this estimator. - predict(X)- Predict each data slice with all possible estimators. - Estimate probabilistic estimates of each data slice with all possible estimators. - score(X, y)- Score each of the estimators on the tested dimensions. - set_params(**params)- Set the parameters of this estimator. - transform(X)- Transform each data slice with all possible estimators. - decision_function(X)[source]¶
- Estimate distances of each data slice to all hyperplanes. - Parameters
- Xarray, shape (n_samples, nd_features, n_slices)
- The training input samples. Each estimator outputs the distance to its hyperplane, e.g.: - [estimators[ii].decision_function(X[..., ii]) for ii in range(n_estimators)]. The feature dimension can be multidimensional e.g.- X.shape = (n_samples, n_features_1, n_features_2, n_estimators).
 
- X
- Returns
- y_predarray, shape (n_samples, n_estimators, n_slices, n_classes * (n_classes-1) // 2)
- The predicted values for each estimator. 
 
- y_pred
 - Notes - This requires - base_estimatorto have a- decision_functionmethod.
 - fit(X, y, **fit_params)[source]¶
- Fit a series of independent estimators to the dataset. - Parameters
- Xarray, shape (n_samples, nd_features, n_tasks)
- The training input samples. For each data slice, a clone estimator is fitted independently. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks). 
- yarray, shape (n_samples,) | (n_samples, n_targets)
- The target values. 
- **fit_paramsdictofstr-> object
- Parameters to pass to the fit method of the estimator. 
 
- X
- Returns
- selfobject
- Return self. 
 
 - Examples using - fit:
 - fit_transform(X, y, **fit_params)[source]¶
- Fit and transform a series of independent estimators to the dataset. - Parameters
- Xarray, shape (n_samples, nd_features, n_tasks)
- The training input samples. For each task, a clone estimator is fitted independently. The feature dimension can be multidimensional, e.g.: - X.shape = (n_samples, n_features_1, n_features_2, n_estimators) 
- yarray, shape (n_samples,) | (n_samples, n_targets)
- The target values. 
- **fit_paramsdictofstr-> object
- Parameters to pass to the fit method of the estimator. 
 
- X
- Returns
- y_predarray, shape (n_samples, n_tasks) | (n_samples, n_tasks, n_targets)
- The predicted values for each estimator. 
 
- y_pred
 
 - predict(X)[source]¶
- Predict each data slice with all possible estimators. - Parameters
- Xarray, shape (n_samples, nd_features, n_slices)
- The training input samples. For each data slice, a fitted estimator predicts each slice of the data independently. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators). 
 
- X
- Returns
- y_predarray, shape (n_samples, n_estimators, n_slices) | (n_samples, n_estimators, n_slices, n_targets)
- The predicted values for each estimator. 
 
- y_pred
 
 - predict_proba(X)[source]¶
- Estimate probabilistic estimates of each data slice with all possible estimators. - Parameters
- Xarray, shape (n_samples, nd_features, n_slices)
- The training input samples. For each data slice, a fitted estimator predicts a slice of the data. The feature dimension can be multidimensional e.g. - X.shape = (n_samples, n_features_1, n_features_2, n_estimators).
 
- X
- Returns
- y_predarray, shape (n_samples, n_estimators, n_slices, n_classes)
- The predicted values for each estimator. 
 
- y_pred
 - Notes - This requires - base_estimatorto have a- predict_probamethod.
 - score(X, y)[source]¶
- Score each of the estimators on the tested dimensions. - Parameters
- Xarray, shape (n_samples, nd_features, n_slices)
- The input samples. For each data slice, the corresponding estimator scores the prediction, e.g.: - [estimators[ii].score(X[..., ii], y) for ii in range(n_slices)]. The feature dimension can be multidimensional e.g.- X.shape = (n_samples, n_features_1, n_features_2, n_estimators).
- yarray, shape (n_samples,) | (n_samples, n_targets)
- The target values. 
 
- X
- Returns
- scorearray, shape (n_samples, n_estimators, n_slices)
- Score for each estimator / data slice couple. 
 
- score
 - Examples using - score:
 - set_params(**params)[source]¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Parameters
- **paramsdict
- Parameters. 
 
- **params
- Returns
- instinstance
- The object. 
 
 
 - transform(X)[source]¶
- Transform each data slice with all possible estimators. - Parameters
- Xarray, shape (n_samples, nd_features, n_slices)
- The input samples. For estimator the corresponding data slice is used to make a transformation. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators). 
 
- X
- Returns
- Xtarray, shape (n_samples, n_estimators, n_slices)
- The transformed values generated by each estimator. 
 
- Xt
 
 
 
