mne.decoding.GeneralizingEstimator

class mne.decoding.GeneralizingEstimator(base_estimator, scoring=None, n_jobs=1, verbose=None)[source]

Generalization Light.

Fit a search-light along the last dimension and use them to apply a systematic cross-tasks generalization.

Parameters
base_estimatorobject

The base estimator to iteratively fit on a subset of the dataset.

scoringcallable() | str | None

Score function (or loss function) with signature score_func(y, y_pred, **kwargs). Note that the “predict” method is automatically identified if scoring is a string (e.g. scoring='roc_auc' calls predict_proba), but is not automatically set if scoring is a callable (e.g. scoring=sklearn.metrics.roc_auc_score).

n_jobsint

The number of jobs to run in parallel (default 1). If -1, it is set to the number of CPU cores. Requires the joblib package.

verbosebool | str | int | None

Control verbosity of the logging output. If None, use the default verbosity level. See the logging documentation and mne.verbose() for details. Should only be passed as a keyword argument.

Attributes
classes_

Methods

__hash__(/)

Return hash(self).

decision_function(X)

Estimate distances of each data slice to all hyperplanes.

fit(X, y, **fit_params)

Fit a series of independent estimators to the dataset.

fit_transform(X, y, **fit_params)

Fit and transform a series of independent estimators to the dataset.

get_params([deep])

Get parameters for this estimator.

predict(X)

Predict each data slice with all possible estimators.

predict_proba(X)

Estimate probabilistic estimates of each data slice with all possible estimators.

score(X, y)

Score each of the estimators on the tested dimensions.

set_params(**params)

Set the parameters of this estimator.

transform(X)

Transform each data slice with all possible estimators.

decision_function(X)[source]

Estimate distances of each data slice to all hyperplanes.

Parameters
Xarray, shape (n_samples, nd_features, n_slices)

The training input samples. Each estimator outputs the distance to its hyperplane, e.g.: [estimators[ii].decision_function(X[..., ii]) for ii in range(n_estimators)]. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators).

Returns
y_predarray, shape (n_samples, n_estimators, n_slices, n_classes * (n_classes-1) // 2)

The predicted values for each estimator.

Notes

This requires base_estimator to have a decision_function method.

fit(X, y, **fit_params)[source]

Fit a series of independent estimators to the dataset.

Parameters
Xarray, shape (n_samples, nd_features, n_tasks)

The training input samples. For each data slice, a clone estimator is fitted independently. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_tasks).

yarray, shape (n_samples,) | (n_samples, n_targets)

The target values.

**fit_paramsdict of str -> object

Parameters to pass to the fit method of the estimator.

Returns
selfobject

Return self.

Examples using fit:

fit_transform(X, y, **fit_params)[source]

Fit and transform a series of independent estimators to the dataset.

Parameters
Xarray, shape (n_samples, nd_features, n_tasks)

The training input samples. For each task, a clone estimator is fitted independently. The feature dimension can be multidimensional, e.g.:

X.shape = (n_samples, n_features_1, n_features_2, n_estimators)
yarray, shape (n_samples,) | (n_samples, n_targets)

The target values.

**fit_paramsdict of str -> object

Parameters to pass to the fit method of the estimator.

Returns
y_predarray, shape (n_samples, n_tasks) | (n_samples, n_tasks, n_targets)

The predicted values for each estimator.

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters
deepbool, optional

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsdict

Parameter names mapped to their values.

predict(X)[source]

Predict each data slice with all possible estimators.

Parameters
Xarray, shape (n_samples, nd_features, n_slices)

The training input samples. For each data slice, a fitted estimator predicts each slice of the data independently. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators).

Returns
y_predarray, shape (n_samples, n_estimators, n_slices) | (n_samples, n_estimators, n_slices, n_targets)

The predicted values for each estimator.

predict_proba(X)[source]

Estimate probabilistic estimates of each data slice with all possible estimators.

Parameters
Xarray, shape (n_samples, nd_features, n_slices)

The training input samples. For each data slice, a fitted estimator predicts a slice of the data. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators).

Returns
y_predarray, shape (n_samples, n_estimators, n_slices, n_classes)

The predicted values for each estimator.

Notes

This requires base_estimator to have a predict_proba method.

score(X, y)[source]

Score each of the estimators on the tested dimensions.

Parameters
Xarray, shape (n_samples, nd_features, n_slices)

The input samples. For each data slice, the corresponding estimator scores the prediction, e.g.: [estimators[ii].score(X[..., ii], y) for ii in range(n_slices)]. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators).

yarray, shape (n_samples,) | (n_samples, n_targets)

The target values.

Returns
scorearray, shape (n_samples, n_estimators, n_slices)

Score for each estimator / data slice couple.

Examples using score:

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Parameters.

Returns
instinstance

The object.

transform(X)[source]

Transform each data slice with all possible estimators.

Parameters
Xarray, shape (n_samples, nd_features, n_slices)

The input samples. For estimator the corresponding data slice is used to make a transformation. The feature dimension can be multidimensional e.g. X.shape = (n_samples, n_features_1, n_features_2, n_estimators).

Returns
Xtarray, shape (n_samples, n_estimators, n_slices)

The transformed values generated by each estimator.

Examples using mne.decoding.GeneralizingEstimator