mne.stats.ttest_1samp_no_p¶
- mne.stats.ttest_1samp_no_p(X, sigma=0, method='relative')[source]¶
- Perform one-sample t-test. - This is a modified version of - scipy.stats.ttest_1samp()that avoids a (relatively) time-consuming p-value calculation, and can adjust for implausibly small variance values 1.- Parameters
- Xarray
- Array to return t-values for. 
- sigmafloat
- The variance estimate will be given by - var + sigma * max(var)or- var + sigma, depending on “method”. By default this is 0 (no adjustment). See Notes for details.
- methodstr
- If ‘relative’, the minimum variance estimate will be sigma * max(var), if ‘absolute’ the minimum variance estimate will be sigma. 
 
- X
- Returns
- tarray
- T-values, potentially adjusted using the hat method. 
 
- t
 - Notes - To use the “hat” adjustment method 1, a value of - sigma=1e-3may be a reasonable choice.- You can use the conversion from - scipy.stats.distributions.t.ppf:- thresh = -scipy.stats.distributions.t.ppf(p_thresh, n_samples - 1) / 2. - to convert a desired p-value threshold to 2-tailed t-value threshold. For one-tailed tests, - threshin the above should be multiplied by 2 (and for- tail=-1, multiplied by- -1).- References - 1(1,2)
- Gerard R. Ridgway, Vladimir Litvak, Guillaume Flandin, Karl J. Friston, and Will D. Penny. The problem of low variance voxels in statistical parametric mapping; a new hat avoids a ‘haircut’. NeuroImage, 59(3):2131–2141, 2012. doi:10.1016/j.neuroimage.2011.10.027. 
 
