mne.preprocessing.peak_finder¶
- mne.preprocessing.peak_finder(x0, thresh=None, extrema=1, verbose=None)[source]¶
- Noise-tolerant fast peak-finding algorithm. - Parameters
- x01d array
- A real vector from the maxima will be found (required). 
- threshfloat|None
- The amount above surrounding data for a peak to be identified. Larger values mean the algorithm is more selective in finding peaks. If - None, use the default of- (max(x0) - min(x0)) / 4.
- extrema{-1, 1}
- 1 if maxima are desired, -1 if minima are desired (default = maxima, 1). 
- verbosebool | str|int|None
- Control verbosity of the logging output. If - None, use the default verbosity level. See the logging documentation and- mne.verbose()for details. Should only be passed as a keyword argument.
 
- x01d 
- Returns
 - Notes - If repeated values are found the first is identified as the peak. Conversion from initial Matlab code from: Nathanael C. Yoder (ncyoder@purdue.edu) - Examples - >>> import numpy as np >>> from mne.preprocessing import peak_finder >>> t = np.arange(0, 3, 0.01) >>> x = np.sin(np.pi*t) - np.sin(0.5*np.pi*t) >>> peak_locs, peak_mags = peak_finder(x) >>> peak_locs array([36, 260]) >>> peak_mags array([0.36900026, 1.76007351])