mne.VolSourceEstimate#
- class mne.VolSourceEstimate(data, vertices, tmin, tstep, subject=None, verbose=None)[source]#
Container for volume source estimates.
- Parameters
- data
array
of shape (n_dipoles, n_times) |tuple
, shape (2,) The data in source space. The data can either be a single array or a tuple with two arrays: “kernel” shape (n_vertices, n_sensors) and “sens_data” shape (n_sensors, n_times). In this case, the source space data corresponds to
np.dot(kernel, sens_data)
.- vertices
list
ofarray
ofint
The indices of the dipoles in the source space. Should be a single array of shape (n_dipoles,) unless there are subvolumes.
- tminscalar
Time point of the first sample in data.
- tstepscalar
Time step between successive samples in data.
- subject
str
The FreeSurfer subject name. While not necessary, it is safer to set the subject parameter to avoid analysis errors.
- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- data
See also
SourceEstimate
A container for surface source estimates.
VectorSourceEstimate
A container for vector surface source estimates.
VolVectorSourceEstimate
A container for volume vector source estimates.
MixedSourceEstimate
A container for mixed surface + volume source estimates.
Notes
New in v0.9.0.
- Attributes
- subject
str
|None
The subject name.
times
array
of shape (n_times,)A timestamp for each sample.
- vertices
list
ofarray
ofint
The indices of the dipoles in the source space. Should be a single array of shape (n_dipoles,) unless there are subvolumes.
data
array
of shape (n_dipoles, n_times)Numpy array of source estimate data.
shape
tuple
Shape of the data.
- subject
Methods
__add__
(a)Add source estimates.
__div__
(a)Divide source estimates.
__mul__
(a)Multiply source estimates.
__neg__
()Negate the source estimate.
__sub__
(a)Subtract source estimates.
apply_baseline
([baseline, verbose])Baseline correct source estimate data.
as_volume
(src[, dest, mri_resolution, format])Export volume source estimate as a nifti object.
bin
(width[, tstart, tstop, func])Return a source estimate object with data summarized over time bins.
copy
()Return copy of source estimate instance.
crop
([tmin, tmax, include_tmax])Restrict SourceEstimate to a time interval.
extract_label_time_course
(labels, src[, ...])Extract label time courses for lists of labels.
get_peak
([tmin, tmax, mode, vert_as_index, ...])Get location and latency of peak amplitude.
in_label
(label, mri, src, *[, verbose])Get a source estimate object restricted to a label.
mean
()Make a summary stc file with mean over time points.
plot
(src[, subject, subjects_dir, mode, ...])Plot Nutmeg style volumetric source estimates using nilearn.
plot_3d
([subject, surface, hemi, colormap, ...])Plot SourceEstimate.
resample
(sfreq[, npad, window, n_jobs, verbose])Resample data.
save
(fname[, ftype, overwrite, verbose])Save the source estimates to a file.
save_as_volume
(fname, src[, dest, ...])Save a volume source estimate in a NIfTI file.
sqrt
()Take the square root.
sum
()Make a summary stc file with sum over time points.
time_as_index
(times[, use_rounding])Convert time to indices.
to_data_frame
([index, scalings, ...])Export data in tabular structure as a pandas DataFrame.
transform
(func[, idx, tmin, tmax, copy])Apply linear transform.
transform_data
(func[, idx, tmin_idx, tmax_idx])Get data after a linear (time) transform has been applied.
- apply_baseline(baseline=(None, 0), *, verbose=None)[source]#
Baseline correct source estimate data.
- Parameters
- baseline
None
|tuple
of length 2 The time interval to consider as “baseline” when applying baseline correction. If
None
, do not apply baseline correction. If a tuple(a, b)
, the interval is betweena
andb
(in seconds), including the endpoints. Ifa
isNone
, the beginning of the data is used; and ifb
isNone
, it is set to the end of the interval. If(None, None)
, the entire time interval is used.Note
The baseline
(a, b)
includes both endpoints, i.e. all timepointst
such thata <= t <= b
.Correction is applied to each source individually in the following way:
Calculate the mean signal of the baseline period.
Subtract this mean from the entire source estimate data.
Note
Baseline correction is appropriate when signal and noise are approximately additive, and the noise level can be estimated from the baseline interval. This can be the case for non-normalized source activities (e.g. signed and unsigned MNE), but it is not the case for normalized estimates (e.g. signal-to-noise ratios, dSPM, sLORETA).
Defaults to
(None, 0)
, i.e. beginning of the the data until time point zero.- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- baseline
- Returns
- stcinstance of
SourceEstimate
The baseline-corrected source estimate object.
- stcinstance of
Notes
Baseline correction can be done multiple times.
- as_volume(src, dest='mri', mri_resolution=False, format='nifti1')[source]#
Export volume source estimate as a nifti object.
- Parameters
- srcinstance of
SourceSpaces
The source spaces (should all be of type volume, or part of a mixed source space).
- dest
'mri'
|'surf'
If
'mri'
the volume is defined in the coordinate system of the original T1 image. If ‘surf’ the coordinate system of the FreeSurfer surface is used (Surface RAS).- mri_resolution
bool
It True the image is saved in MRI resolution.
- format
str
Either ‘nifti1’ (default) or ‘nifti2’.
- srcinstance of
- Returns
- imginstance of
Nifti1Image
The image object.
- imginstance of
Notes
New in v0.9.0.
Examples using
as_volume
:Compute MNE-dSPM inverse solution on evoked data in volume source space
Compute MNE-dSPM inverse solution on evoked data in volume source space
- bin(width, tstart=None, tstop=None, func=<function mean>)[source]#
Return a source estimate object with data summarized over time bins.
Time bins of
width
seconds. This method is intended for visualization only. No filter is applied to the data before binning, making the method inappropriate as a tool for downsampling data.- Parameters
- widthscalar
Width of the individual bins in seconds.
- tstartscalar |
None
Time point where the first bin starts. The default is the first time point of the stc.
- tstopscalar |
None
Last possible time point contained in a bin (if the last bin would be shorter than width it is dropped). The default is the last time point of the stc.
- func
callable()
Function that is applied to summarize the data. Needs to accept a numpy.array as first input and an
axis
keyword argument.
- Returns
- stc
SourceEstimate
|VectorSourceEstimate
The binned source estimate.
- stc
- copy()[source]#
Return copy of source estimate instance.
- Returns
- stcinstance of
SourceEstimate
A copy of the source estimate.
- stcinstance of
- crop(tmin=None, tmax=None, include_tmax=True)[source]#
Restrict SourceEstimate to a time interval.
- Parameters
- tmin
float
|None
The first time point in seconds. If None the first present is used.
- tmax
float
|None
The last time point in seconds. If None the last present is used.
- include_tmax
bool
If True (default), include tmax. If False, exclude tmax (similar to how Python indexing typically works).
New in v0.19.
- tmin
- Returns
- stcinstance of
SourceEstimate
The cropped source estimate.
- stcinstance of
Examples using
crop
:Compute MNE-dSPM inverse solution on evoked data in volume source space
Compute MNE-dSPM inverse solution on evoked data in volume source spaceMorph volumetric source estimate
Morph volumetric source estimateComputing source timecourses with an XFit-like multi-dipole model
Computing source timecourses with an XFit-like multi-dipole model
- property data#
Numpy array of source estimate data.
- extract_label_time_course(labels, src, mode='auto', allow_empty=False, *, mri_resolution=True, verbose=None)[source]#
Extract label time courses for lists of labels.
This function will extract one time course for each label. The way the time courses are extracted depends on the mode parameter.
- Parameters
- labels
Label
|BiHemiLabel
|list
|tuple
|str
If using a surface or mixed source space, this should be the
Label
’s for which to extract the time course. If working with whole-brain volume source estimates, this must be one of:a string path to a FreeSurfer atlas for the subject (e.g., their ‘aparc.a2009s+aseg.mgz’) to extract time courses for all volumes in the atlas
a two-element list or tuple, the first element being a path to an atlas, and the second being a list or dict of
volume_labels
to extract (seemne.setup_volume_source_space()
for details).
Changed in version 0.21.0: Support for volume source estimates.
- srcinstance of
SourceSpaces
The source spaces for the source time courses.
- mode
str
Extraction mode, see Notes.
- allow_empty
bool
|str
False
(default) will emit an error if there are labels that have no vertices in the source estimate.True
and'ignore'
will return all-zero time courses for labels that do not have any vertices in the source estimate, and True will emit a warning while and “ignore” will just log a message.Changed in version 0.21.0: Support for “ignore”.
- mri_resolution
bool
If True (default), the volume source space will be upsampled to the original MRI resolution via trilinear interpolation before the atlas values are extracted. This ensnures that each atlas label will contain source activations. When False, only the original source space points are used, and some atlas labels thus may not contain any source space vertices.
New in v0.21.0.
- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- labels
- Returns
See also
extract_label_time_course
Extract time courses for multiple STCs.
Notes
Valid values for
mode
are:'max'
Maximum value across vertices at each time point within each label.
'mean'
Average across vertices at each time point within each label. Ignores orientation of sources for standard source estimates, which varies across the cortical surface, which can lead to cancellation. Vector source estimates are always in XYZ / RAS orientation, and are thus already geometrically aligned.
'mean_flip'
Finds the dominant direction of source space normal vector orientations within each label, applies a sign-flip to time series at vertices whose orientation is more than 180° different from the dominant direction, and then averages across vertices at each time point within each label.
'pca_flip'
Applies singular value decomposition to the time courses within each label, and uses the first right-singular vector as the representative label time course. This signal is scaled so that its power matches the average (per-vertex) power within the label, and sign-flipped by multiplying by
np.sign(u @ flip)
, whereu
is the first left-singular vector andflip
is the same sign-flip vector used whenmode='mean_flip'
. This sign-flip ensures that extracting time courses from the same label in similar STCs does not result in 180° direction/phase changes.
'auto'
(default)Uses
'mean_flip'
when a standard source estimate is applied, and'mean'
when a vector source estimate is supplied.New in v0.21: Support for
'auto'
, vector, and volume source estimates.
The only modes that work for vector and volume source estimates are
'mean'
,'max'
, and'auto'
.
- get_peak(tmin=None, tmax=None, mode='abs', vert_as_index=False, time_as_index=False)[source]#
Get location and latency of peak amplitude.
- Parameters
- tmin
float
|None
The minimum point in time to be considered for peak getting.
- tmax
float
|None
The maximum point in time to be considered for peak getting.
- mode{‘pos’, ‘neg’, ‘abs’}
How to deal with the sign of the data. If ‘pos’ only positive values will be considered. If ‘neg’ only negative values will be considered. If ‘abs’ absolute values will be considered. Defaults to ‘abs’.
- vert_as_index
bool
Whether to return the vertex index (True) instead of of its ID (False, default).
- time_as_index
bool
Whether to return the time index (True) instead of the latency (False, default).
- tmin
- Returns
- in_label(label, mri, src, *, verbose=None)[source]#
Get a source estimate object restricted to a label.
SourceEstimate contains the time course of activation of all sources inside the label.
- Parameters
- label
str
|int
The label to use. Can be the name of a label if using a standard FreeSurfer atlas, or an integer value to extract from the
mri
.- mri
str
Path to the atlas to use.
- srcinstance of
SourceSpaces
The volumetric source space. It must be a single, whole-brain volume.
- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- label
- Returns
- stc
VolSourceEstimate
|VolVectorSourceEstimate
The source estimate restricted to the given label.
- stc
Notes
New in v0.21.0.
- mean()[source]#
Make a summary stc file with mean over time points.
- Returns
- stc
SourceEstimate
|VectorSourceEstimate
The modified stc.
- stc
- plot(src, subject=None, subjects_dir=None, mode='stat_map', bg_img='T1.mgz', colorbar=True, colormap='auto', clim='auto', transparent='auto', show=True, initial_time=None, initial_pos=None, verbose=None)[source]#
Plot Nutmeg style volumetric source estimates using nilearn.
- Parameters
- srcinstance of
SourceSpaces
| instance ofSourceMorph
The source space. Can also be a SourceMorph to morph the STC to a new subject (see Examples).
Changed in version 0.18: Support for
SpatialImage
.- subject
str
|None
The FreeSurfer subject name. If
None
,stc.subject
will be used.- subjects_dirpath-like |
None
The path to the directory containing the FreeSurfer subjects reconstructions. If
None
, defaults to theSUBJECTS_DIR
environment variable.- mode
str
The plotting mode to use. Either ‘stat_map’ (default) or ‘glass_brain’. For “glass_brain”, activation absolute values are displayed after being transformed to a standard MNI brain.
- bg_imginstance of
SpatialImage
|str
The background image used in the nilearn plotting function. Can also be a string to use the
bg_img
file in the subject’s MRI directory (default is'T1.mgz'
). Not used in “glass brain” plotting.- colorbar
bool
, optional If True, display a colorbar on the right of the plots.
- colormap
str
|np.ndarray
offloat
, shape(n_colors, 3 | 4) Name of colormap to use or a custom look up table. If array, must be (n x 3) or (n x 4) array for with RGB or RGBA values between 0 and 255.
- clim
str
|dict
Colorbar properties specification. If ‘auto’, set clim automatically based on data percentiles. If dict, should contain:
kind
‘value’ | ‘percent’Flag to specify type of limits.
lims
list | np.ndarray | tuple of float, 3 elementsLower, middle, and upper bounds for colormap.
pos_lims
list | np.ndarray | tuple of float, 3 elementsLower, middle, and upper bound for colormap. Positive values will be mirrored directly across zero during colormap construction to obtain negative control points.
Note
Only one of
lims
orpos_lims
should be provided. Only sequential colormaps should be used withlims
, and only divergent colormaps should be used withpos_lims
.- transparent
bool
|None
If True: use a linear transparency between fmin and fmid and make values below fmin fully transparent (symmetrically for divergent colormaps). None will choose automatically based on colormap type.
- show
bool
Show figures if True. Defaults to True.
- initial_time
float
|None
The initial time to plot. Can be None (default) to use the time point with the maximal absolute value activation across all voxels or the
initial_pos
voxel (ifinitial_pos is None
or not, respectively).New in v0.19.
- initial_pos
ndarray
, shape (3,) |None
The initial position to use (in m). Can be None (default) to use the voxel with the maximum absolute value activation across all time points or at
initial_time
(ifinitial_time is None
or not, respectively).New in v0.19.
- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- srcinstance of
- Returns
- figinstance of
Figure
The figure.
- figinstance of
Notes
Click on any of the anatomical slices to explore the time series. Clicking on any time point will bring up the corresponding anatomical map.
The left and right arrow keys can be used to navigate in time. To move in time by larger steps, use shift+left and shift+right.
In
'glass_brain'
mode, values are transformed to the standard MNI brain using the FreeSurfer Talairach transformation$SUBJECTS_DIR/$SUBJECT/mri/transforms/talairach.xfm
.New in v0.17.
Changed in version 0.19: MRI volumes are automatically transformed to MNI space in
'glass_brain'
mode.Examples
Passing a
mne.SourceMorph
as thesrc
parameter can be useful for plotting in a different subject’s space (here, a'sample'
STC in'fsaverage'
’s space):>>> morph = mne.compute_source_morph(src_sample, subject_to='fsaverage') >>> fig = stc_vol_sample.plot(morph)
Examples using
plot
:Source reconstruction using an LCMV beamformer
Source reconstruction using an LCMV beamformerVisualize source time courses (stcs)
Visualize source time courses (stcs)
- plot_3d(subject=None, surface='white', hemi='both', colormap='auto', time_label='auto', smoothing_steps=10, transparent=True, alpha=0.1, time_viewer='auto', subjects_dir=None, figure=None, views='axial', colorbar=True, clim='auto', cortex='classic', size=800, background='black', foreground=None, initial_time=None, time_unit='s', backend='auto', spacing='oct6', title=None, show_traces='auto', src=None, volume_options=1.0, view_layout='vertical', add_data_kwargs=None, brain_kwargs=None, verbose=None)[source]#
Plot SourceEstimate.
- Parameters
- subject
str
|None
The FreeSurfer subject name. If
None
,stc.subject
will be used.- surface
str
The type of surface (inflated, white etc.).
- hemi
str
Hemisphere id (ie
'lh'
,'rh'
,'both'
, or'split'
). In the case of'both'
, both hemispheres are shown in the same window. In the case of'split'
hemispheres are displayed side-by-side in different viewing panes.- colormap
str
|np.ndarray
offloat
, shape(n_colors, 3 | 4) Name of colormap to use or a custom look up table. If array, must be (n x 3) or (n x 4) array for with RGB or RGBA values between 0 and 255. The default (‘auto’) uses
'hot'
for one-sided data and ‘mne’ for two-sided data.- time_label
str
|callable()
|None
Format of the time label (a format string, a function that maps floating point time values to strings, or None for no label). The default is
'auto'
, which will usetime=%0.2f ms
if there is more than one time point.- smoothing_steps
int
The amount of smoothing.
- transparent
bool
|None
If True: use a linear transparency between fmin and fmid and make values below fmin fully transparent (symmetrically for divergent colormaps). None will choose automatically based on colormap type.
- alpha
float
Alpha value to apply globally to the overlay. Has no effect with mpl backend.
- time_viewer
bool
|str
Display time viewer GUI. Can also be ‘auto’, which will mean True for the PyVista backend and False otherwise.
Changed in version 0.20.0: “auto” mode added.
- subjects_dirpath-like |
None
The path to the directory containing the FreeSurfer subjects reconstructions. If
None
, defaults to theSUBJECTS_DIR
environment variable.- figureinstance of
Figure3D
| instance ofmatplotlib.figure.Figure
|list
|int
|None
If None, a new figure will be created. If multiple views or a split view is requested, this must be a list of the appropriate length. If int is provided it will be used to identify the PyVista figure by it’s id or create a new figure with the given id. If an instance of matplotlib figure, mpl backend is used for plotting.
- views
str
|list
View to use. Using multiple views (list) is not supported for mpl backend. See
Brain.show_view
for valid string options.When plotting a standard SourceEstimate (not volume, mixed, or vector) and using the PyVista backend,
views='flat'
is also supported to plot cortex as a flatmap.Using multiple views (list) is not supported by the matplotlib backend.
Changed in version 0.21.0: Support for flatmaps.
- colorbar
bool
If True, display colorbar on scene.
- clim
str
|dict
Colorbar properties specification. If ‘auto’, set clim automatically based on data percentiles. If dict, should contain:
kind
‘value’ | ‘percent’Flag to specify type of limits.
lims
list | np.ndarray | tuple of float, 3 elementsLower, middle, and upper bounds for colormap.
pos_lims
list | np.ndarray | tuple of float, 3 elementsLower, middle, and upper bound for colormap. Positive values will be mirrored directly across zero during colormap construction to obtain negative control points.
Note
Only one of
lims
orpos_lims
should be provided. Only sequential colormaps should be used withlims
, and only divergent colormaps should be used withpos_lims
.- cortex
str
|tuple
Specifies how binarized curvature values are rendered. Either the name of a preset Brain cortex colorscheme (one of
'classic'
,'bone'
,'low_contrast'
, or'high_contrast'
), or the name of a colormap, or a tuple with values(colormap, min, max, reverse)
to fully specify the curvature colors. Has no effect with the matplotlib backend.- size
float
ortuple
offloat
The size of the window, in pixels. can be one number to specify a square window, or the (width, height) of a rectangular window. Has no effect with mpl backend.
- backgroundmatplotlib color
Color of the background of the display window.
- foregroundmatplotlib color |
None
Color of the foreground of the display window. Has no effect with mpl backend. None will choose white or black based on the background color.
- initial_time
float
|None
The time to display on the plot initially.
None
to display the first time sample (default).- time_unit
's'
|'ms'
Whether time is represented in seconds (“s”, default) or milliseconds (“ms”).
- backend
'auto'
|'pyvistaqt'
|'matplotlib'
Which backend to use. If
'auto'
(default), tries to plot with pyvistaqt, but resorts to matplotlib if no 3d backend is available.New in v0.15.0.
- spacing
str
Only affects the matplotlib backend. The spacing to use for the source space. Can be
'ico#'
for a recursively subdivided icosahedron,'oct#'
for a recursively subdivided octahedron, or'all'
for all points. In general, you can speed up the plotting by selecting a sparser source space. Defaults to ‘oct6’.New in v0.15.0.
- title
str
|None
Title for the figure. If None, the subject name will be used.
New in v0.17.0.
- show_traces
bool
|str
|float
If True, enable interactive picking of a point on the surface of the brain and plot its time course. This feature is only available with the PyVista 3d backend, and requires
time_viewer=True
. Defaults to ‘auto’, which will use True if and only iftime_viewer=True
, the backend is PyVista, and there is more than one time point. If float (between zero and one), it specifies what proportion of the total window should be devoted to traces (True is equivalent to 0.25, i.e., it will occupy the bottom 1/4 of the figure).New in v0.20.0.
- srcinstance of
SourceSpaces
|None
The source space corresponding to the source estimate. Only necessary if the STC is a volume or mixed source estimate.
- volume_options
float
|dict
|None
Options for volumetric source estimate plotting, with key/value pairs:
'resolution'
float | NoneResolution (in mm) of volume rendering. Smaller (e.g., 1.) looks better at the cost of speed. None (default) uses the volume source space resolution, which is often something like 7 or 5 mm, without resampling.
'blending'
strCan be “mip” (default) for maximum intensity projection or “composite” for composite blending using alpha values.
'alpha'
float | NoneAlpha for the volumetric rendering. Defaults are 0.4 for vector source estimates and 1.0 for scalar source estimates.
'surface_alpha'
float | NoneAlpha for the surface enclosing the volume(s). None (default) will use half the volume alpha. Set to zero to avoid plotting the surface.
'silhouette_alpha'
float | NoneAlpha for a silhouette along the outside of the volume. None (default) will use
0.25 * surface_alpha
.
'silhouette_linewidth'
floatThe line width to use for the silhouette. Default is 2.
A float input (default 1.) or None will be used for the
'resolution'
entry.- view_layout
str
Can be “vertical” (default) or “horizontal”. When using “horizontal” mode, the PyVista backend must be used and hemi cannot be “split”.
- add_data_kwargs
dict
|None
Additional arguments to brain.add_data (e.g.,
dict(time_label_size=10)
).- brain_kwargs
dict
|None
Additional arguments to the
mne.viz.Brain
constructor (e.g.,dict(silhouette=True)
).- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- subject
- Returns
- figureinstance of
mne.viz.Brain
|matplotlib.figure.Figure
An instance of
mne.viz.Brain
or matplotlib figure.
- figureinstance of
Notes
Flatmaps are available by default for
fsaverage
but not for other subjects reconstructed by FreeSurfer. We recommend usingmne.compute_source_morph()
to morph source estimates tofsaverage
for flatmap plotting. If you want to construct your own flatmap for a given subject, these links might help:Examples using
plot_3d
:Working with sEEG dataPlot point-spread functions (PSFs) for a volume
Plot point-spread functions (PSFs) for a volume
- resample(sfreq, npad='auto', window='boxcar', n_jobs=None, verbose=None)[source]#
Resample data.
If appropriate, an anti-aliasing filter is applied before resampling. See Resampling and decimating data for more information.
- Parameters
- sfreq
float
New sample rate to use.
- npad
int
|str
Amount to pad the start and end of the data. Can also be “auto” to use a padding that will result in a power-of-two size (can be much faster).
- window
str
|tuple
Window to use in resampling. See
scipy.signal.resample()
.- n_jobs
int
|None
The number of jobs to run in parallel. If
-1
, it is set to the number of CPU cores. Requires thejoblib
package.None
(default) is a marker for ‘unset’ that will be interpreted asn_jobs=1
(sequential execution) unless the call is performed under ajoblib.parallel_config
context manager that sets another value forn_jobs
.- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- sfreq
- Returns
- stcinstance of
SourceEstimate
The resampled source estimate.
- stcinstance of
Notes
For some data, it may be more accurate to use npad=0 to reduce artifacts. This is dataset dependent – check your data!
Note that the sample rate of the original data is inferred from tstep.
- save(fname, ftype='stc', *, overwrite=False, verbose=None)[source]#
Save the source estimates to a file.
- Parameters
- fnamepath-like
The stem of the file name. The stem is extended with
"-vl.stc"
or"-vl.w"
.- ftype
str
File format to use. Allowed values are
"stc"
(default),"w"
, and"h5"
. The"w"
format only supports a single time point.- overwrite
bool
If True (default False), overwrite the destination file if it exists.
New in v1.0.
- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- save_as_volume(fname, src, dest='mri', mri_resolution=False, format='nifti1', *, overwrite=False, verbose=None)[source]#
Save a volume source estimate in a NIfTI file.
- Parameters
- fnamepath-like
The name of the generated nifti file.
- src
list
The list of source spaces (should all be of type volume).
- dest
'mri'
|'surf'
If
'mri'
the volume is defined in the coordinate system of the original T1 image. If'surf'
the coordinate system of the FreeSurfer surface is used (Surface RAS).- mri_resolution
bool
It True the image is saved in MRI resolution.
- format
str
Either
'nifti1'
(default) or'nifti2'
.New in v0.17.
- overwrite
bool
If True (default False), overwrite the destination file if it exists.
New in v1.0.
- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.New in v1.0.
- Returns
- imginstance
Nifti1Image
The image object.
- imginstance
Notes
New in v0.9.0.
- property sfreq#
Sample rate of the data.
- property shape#
Shape of the data.
- sqrt()[source]#
Take the square root.
- Returns
- stcinstance of
SourceEstimate
A copy of the SourceEstimate with sqrt(data).
- stcinstance of
- sum()[source]#
Make a summary stc file with sum over time points.
- Returns
- stc
SourceEstimate
|VectorSourceEstimate
The modified stc.
- stc
- property times#
A timestamp for each sample.
- property tmin#
The first timestamp.
- to_data_frame(index=None, scalings=None, long_format=False, time_format=None, *, verbose=None)[source]#
Export data in tabular structure as a pandas DataFrame.
Vertices are converted to columns in the DataFrame. By default, an additional column “time” is added, unless
index='time'
(in which case time values form the DataFrame’s index).- Parameters
- index‘time’ |
None
Kind of index to use for the DataFrame. If
None
, a sequential integer index (pandas.RangeIndex
) will be used. If'time'
, apandas.Index
orpandas.TimedeltaIndex
will be used (depending on the value oftime_format
). Defaults toNone
.- scalings
dict
|None
Scaling factor applied to the channels picked. If
None
, defaults todict(eeg=1e6, mag=1e15, grad=1e13)
— i.e., converts EEG to µV, magnetometers to fT, and gradiometers to fT/cm.- long_format
bool
If True, the DataFrame is returned in long format where each row is one observation of the signal at a unique combination of time point and vertex. Defaults to
False
.- time_format
str
|None
Desired time format. If
None
, no conversion is applied, and time values remain as float values in seconds. If'ms'
, time values will be rounded to the nearest millisecond and converted to integers. If'timedelta'
, time values will be converted topandas.Timedelta
values. Default isNone
.New in v0.20.
- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- index‘time’ |
- Returns
- dfinstance of
pandas.DataFrame
A dataframe suitable for usage with other statistical/plotting/analysis packages.
- dfinstance of
- transform(func, idx=None, tmin=None, tmax=None, copy=False)[source]#
Apply linear transform.
The transform is applied to each source time course independently.
- Parameters
- func
callable()
The transform to be applied, including parameters (see, e.g.,
functools.partial()
). The first parameter of the function is the input data. The first two dimensions of the transformed data should be (i) vertices and (ii) time. See Notes for details.- idx
array
|None
Indices of source time courses for which to compute transform. If None, all time courses are used.
- tmin
float
|int
|None
First time point to include (ms). If None, self.tmin is used.
- tmax
float
|int
|None
Last time point to include (ms). If None, self.tmax is used.
- copy
bool
If True, return a new instance of SourceEstimate instead of modifying the input inplace.
- func
- Returns
- stcs
SourceEstimate
|VectorSourceEstimate
|list
The transformed stc or, in the case of transforms which yield N-dimensional output (where N > 2), a list of stcs. For a list, copy must be True.
- stcs
Notes
Transforms which yield 3D output (e.g. time-frequency transforms) are valid, so long as the first two dimensions are vertices and time. In this case, the copy parameter must be True and a list of SourceEstimates, rather than a single instance of SourceEstimate, will be returned, one for each index of the 3rd dimension of the transformed data. In the case of transforms yielding 2D output (e.g. filtering), the user has the option of modifying the input inplace (copy = False) or returning a new instance of SourceEstimate (copy = True) with the transformed data.
Applying transforms can be significantly faster if the SourceEstimate object was created using “(kernel, sens_data)”, for the “data” parameter as the transform is applied in sensor space. Inverse methods, e.g., “apply_inverse_epochs”, or “apply_lcmv_epochs” do this automatically (if possible).
- transform_data(func, idx=None, tmin_idx=None, tmax_idx=None)[source]#
Get data after a linear (time) transform has been applied.
The transform is applied to each source time course independently.
- Parameters
- func
callable()
The transform to be applied, including parameters (see, e.g.,
functools.partial()
). The first parameter of the function is the input data. The first return value is the transformed data, remaining outputs are ignored. The first dimension of the transformed data has to be the same as the first dimension of the input data.- idx
array
|None
Indicices of source time courses for which to compute transform. If None, all time courses are used.
- tmin_idx
int
|None
Index of first time point to include. If None, the index of the first time point is used.
- tmax_idx
int
|None
Index of the first time point not to include. If None, time points up to (and including) the last time point are included.
- func
- Returns
- data_t
ndarray
The transformed data.
- data_t
Notes
Applying transforms can be significantly faster if the SourceEstimate object was created using “(kernel, sens_data)”, for the “data” parameter as the transform is applied in sensor space. Inverse methods, e.g., “apply_inverse_epochs”, or “apply_lcmv_epochs” do this automatically (if possible).
- property tstep#
The change in time between two consecutive samples (1 / sfreq).
Examples using mne.VolSourceEstimate
#
Source localization with equivalent current dipole (ECD) fit
Source reconstruction using an LCMV beamformer
Visualize source time courses (stcs)
Compute MNE-dSPM inverse solution on evoked data in volume source space
Morph volumetric source estimate
Computing source timecourses with an XFit-like multi-dipole model
Plot point-spread functions (PSFs) for a volume