mne.stats.ttest_ind_no_p#
- mne.stats.ttest_ind_no_p(a, b, equal_var=True, sigma=0.0)[source]#
Independent samples t-test without p calculation.
This is a modified version of
scipy.stats.ttest_ind()
. It operates along the first axis. Thesigma
parameter provides an optional “hat” adjustment (seettest_1samp_no_p()
and 1).- Parameters
- aarray_like
The first array.
- barray_like
The second array.
- equal_var
bool
Assume equal variance. See
scipy.stats.ttest_ind()
.- sigma
float
The regularization. See
ttest_1samp_no_p()
.
- Returns
- t
array
T values.
- t
References
- 1
Gerard R. Ridgway, Vladimir Litvak, Guillaume Flandin, Karl J. Friston, and Will D. Penny. The problem of low variance voxels in statistical parametric mapping; a new hat avoids a ‘haircut’. NeuroImage, 59(3):2131–2141, 2012. doi:10.1016/j.neuroimage.2011.10.027.