mne.decoding.UnsupervisedSpatialFilter#

class mne.decoding.UnsupervisedSpatialFilter(estimator, average=False)[source]#

Use unsupervised spatial filtering across time and samples.

Parameters:
estimatorinstance of sklearn.base.BaseEstimator

Estimator using some decomposition algorithm.

averagebool, default False

If True, the estimator is fitted on the average across samples (e.g. epochs).

Methods

fit(X[, y])

Fit the spatial filters.

fit_transform(X[, y])

Transform the data to its filtered components after fitting.

get_params([deep])

Get parameters for this estimator.

inverse_transform(X)

Inverse transform the data to its original space.

set_params(**params)

Set the parameters of this estimator.

transform(X)

Transform the data to its spatial filters.

fit(X, y=None)[source]#

Fit the spatial filters.

Parameters:
Xarray, shape (n_epochs, n_channels, n_times)

The data to be filtered.

yNone | array, shape (n_samples,)

Used for scikit-learn compatibility.

Returns:
selfinstance of UnsupervisedSpatialFilter

Return the modified instance.

fit_transform(X, y=None)[source]#

Transform the data to its filtered components after fitting.

Parameters:
Xarray, shape (n_epochs, n_channels, n_times)

The data to be filtered.

yNone | array, shape (n_samples,)

Used for scikit-learn compatibility.

Returns:
Xarray, shape (n_epochs, n_channels, n_times)

The transformed data.

Examples using fit_transform:

Analysis of evoked response using ICA and PCA reduction techniques

Analysis of evoked response using ICA and PCA reduction techniques

Analysis of evoked response using ICA and PCA reduction techniques
get_params(deep=True)[source]#

Get parameters for this estimator.

Parameters:
deepbool, optional

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:
paramsdict

Parameter names mapped to their values.

inverse_transform(X)[source]#

Inverse transform the data to its original space.

Parameters:
Xarray, shape (n_epochs, n_components, n_times)

The data to be inverted.

Returns:
Xarray, shape (n_epochs, n_channels, n_times)

The transformed data.

set_params(**params)[source]#

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:
**paramsdict

Parameters.

Returns:
instinstance

The object.

transform(X)[source]#

Transform the data to its spatial filters.

Parameters:
Xarray, shape (n_epochs, n_channels, n_times)

The data to be filtered.

Returns:
Xarray, shape (n_epochs, n_channels, n_times)

The transformed data.

Examples using mne.decoding.UnsupervisedSpatialFilter#

Analysis of evoked response using ICA and PCA reduction techniques

Analysis of evoked response using ICA and PCA reduction techniques

Analysis of evoked response using ICA and PCA reduction techniques