mne.viz.plot_topomap#

mne.viz.plot_topomap(data, pos, *, ch_type='eeg', sensors=True, show_names=None, names=None, mask=None, mask_params=None, contours=6, outlines='head', sphere=None, image_interp='cubic', extrapolate='auto', border='mean', res=64, size=1, cmap=None, vlim=(None, None), vmin=None, vmax=None, cnorm=None, axes=None, show=True, onselect=None)[source]#

Plot a topographic map as image.

Parameters:
dataarray, shape (n_chan,)

The data values to plot.

posarray, shape (n_channels, 2) | instance of Info

Location information for the channels. If an array, should provide the x and y coordinates for plotting the channels in 2D. If an Info object it must contain only one channel type and exactly len(data) channels; the x/y coordinates will be inferred from the montage in the Info object.

ch_type‘mag’ | ‘grad’ | ‘planar1’ | ‘planar2’ | ‘eeg’ | None

The channel type to plot. For 'grad', the gradiometers are collected in pairs and the RMS for each pair is plotted. If None the first available channel type from order shown above is used. Defaults to None.

New in version 0.21.

sensorsbool | str

Whether to add markers for sensor locations. If str, should be a valid matplotlib format string (e.g., 'r+' for red plusses, see the Notes section of plot()). If True (the default), black circles will be used.

show_namesbool | callable()

If True, show channel names next to each sensor marker. If callable, channel names will be formatted using the callable; e.g., to delete the prefix ‘MEG ‘ from all channel names, pass the function lambda x: x.replace('MEG ', ''). If mask is not None, only non-masked sensor names will be shown.

Deprecated since version v1.2: The show_names parameter will be removed in version 1.3. Please use the names parameter instead.

namesNone | list

Labels for the sensors. If a list, labels should correspond to the order of channels in data. If None (default), no channel names are plotted.

maskndarray of bool, shape (n_channels,) | None

Array indicating channel(s) to highlight with a distinct plotting style. Array elements set to True will be plotted with the parameters given in mask_params. Defaults to None, equivalent to an array of all False elements.

mask_paramsdict | None

Additional plotting parameters for plotting significant sensors. Default (None) equals:

dict(marker='o', markerfacecolor='w', markeredgecolor='k',
        linewidth=0, markersize=4)
contoursint | array_like

The number of contour lines to draw. If 0, no contours will be drawn. If a positive integer, that number of contour levels are chosen using the matplotlib tick locator (may sometimes be inaccurate, use array for accuracy). If array-like, the array values are used as the contour levels. The values should be in µV for EEG, fT for magnetometers and fT/m for gradiometers. If colorbar=True, the colorbar will have ticks corresponding to the contour levels. Default is 6.

outlines‘head’ | ‘skirt’ | dict | None

The outlines to be drawn. If ‘head’, the default head scheme will be drawn. If ‘skirt’ the head scheme will be drawn, but sensors are allowed to be plotted outside of the head circle. If dict, each key refers to a tuple of x and y positions, the values in ‘mask_pos’ will serve as image mask. Alternatively, a matplotlib patch object can be passed for advanced masking options, either directly or as a function that returns patches (required for multi-axis plots). If None, nothing will be drawn. Defaults to ‘head’.

Deprecated since version v1.2: The outlines='skirt' option is no longer supported and will raise an error starting in version 1.3. Pass outlines='head', sphere='eeglab' for similar behavior.

spherefloat | array_like | instance of ConductorModel | None | ‘auto’ | ‘eeglab’

The sphere parameters to use for the head outline. Can be array-like of shape (4,) to give the X/Y/Z origin and radius in meters, or a single float to give just the radius (origin assumed 0, 0, 0). Can also be an instance of a spherical ConductorModel to use the origin and radius from that object. If 'auto' the sphere is fit to digitization points. If 'eeglab' the head circle is defined by EEG electrodes 'Fpz', 'Oz', 'T7', and 'T8' (if 'Fpz' is not present, it will be approximated from the coordinates of 'Oz'). None (the default) is equivalent to 'auto' when enough extra digitization points are available, and (0, 0, 0, 0.095) otherwise.

New in version 0.20.

Changed in version 1.1: Added 'eeglab' option.

image_interpstr

The image interpolation to be used. Options are 'cubic' (default) to use scipy.interpolate.CloughTocher2DInterpolator, 'nearest' to use scipy.spatial.Voronoi or 'linear' to use scipy.interpolate.LinearNDInterpolator.

extrapolatestr

Options:

  • 'box'

    Extrapolate to four points placed to form a square encompassing all data points, where each side of the square is three times the range of the data in the respective dimension.

  • 'local' (default for MEG sensors)

    Extrapolate only to nearby points (approximately to points closer than median inter-electrode distance). This will also set the mask to be polygonal based on the convex hull of the sensors.

  • 'head' (default for non-MEG sensors)

    Extrapolate out to the edges of the clipping circle. This will be on the head circle when the sensors are contained within the head circle, but it can extend beyond the head when sensors are plotted outside the head circle.

Changed in version 0.21:

  • The default was changed to 'local' for MEG sensors.

  • 'local' was changed to use a convex hull mask

  • 'head' was changed to extrapolate out to the clipping circle.

New in version 0.18.

borderfloat | ‘mean’

Value to extrapolate to on the topomap borders. If 'mean' (default), then each extrapolated point has the average value of its neighbours.

New in version 0.20.

resint

The resolution of the topomap image (number of pixels along each side).

sizefloat

Side length of each subplot in inches.

cmapmatplotlib colormap | None

Colormap to use. If None, ‘Reds’ is used for all positive data, otherwise defaults to ‘RdBu_r’.

vlimtuple of length 2

Colormap limits to use. If a tuple of floats, specifies the lower and upper bounds of the colormap (in that order); providing None for either entry will set the corresponding boundary at the min/max of the data. Defaults to (None, None).

New in version 1.2.

vmin, vmaxfloat | callable() | None

Lower and upper bounds of the colormap, in the same units as the data. If vmin and vmax are both None, they are set at ± the maximum absolute value of the data (yielding a colormap with midpoint at 0). If only one of vmin, vmax is None, will use min(data) or max(data), respectively. If callable, should accept a NumPy array of data and return a float.

Deprecated since version v1.2: The vmin and vmax parameters will be removed in version 1.3. Please use the vlim parameter instead.

cnormmatplotlib.colors.Normalize | None

How to normalize the colormap. If None, standard linear normalization is performed. If not None, vmin and vmax will be ignored. See Matplotlib docs for more details on colormap normalization, and the ERDs example for an example of its use.

New in version 0.24.

axesinstance of Axes | None

The axes to plot to. If None, a new Figure will be created. Default is None.

Changed in version 1.2: If axes=None, a new Figure is created instead of plotting into the current axes.

showbool

Show the figure if True.

onselectcallable() | None

A function to be called when the user selects a set of channels by click-dragging (uses a matplotlib RectangleSelector). If None interactive channel selection is disabled. Defaults to None.

Returns:
immatplotlib.image.AxesImage

The interpolated data.

cnmatplotlib.contour.ContourSet

The fieldlines.

Examples using mne.viz.plot_topomap#

Frequency-tagging: Basic analysis of an SSVEP/vSSR dataset

Frequency-tagging: Basic analysis of an SSVEP/vSSR dataset

Frequency-tagging: Basic analysis of an SSVEP/vSSR dataset
Identify EEG Electrodes Bridged by too much Gel

Identify EEG Electrodes Bridged by too much Gel

Identify EEG Electrodes Bridged by too much Gel
Plotting topographic maps of evoked data

Plotting topographic maps of evoked data

Plotting topographic maps of evoked data
Receptive Field Estimation and Prediction

Receptive Field Estimation and Prediction

Receptive Field Estimation and Prediction