Simulation#

mne.simulation:

Data simulation code.

add_chpi(raw[, head_pos, interp, n_jobs, ...])

Add cHPI activations to raw data.

add_ecg(raw[, head_pos, interp, n_jobs, ...])

Add ECG noise to raw data.

add_eog(raw[, head_pos, interp, n_jobs, ...])

Add blink noise to raw data.

add_noise(inst, cov[, iir_filter, ...])

Create noise as a multivariate Gaussian.

simulate_evoked(fwd, stc, info[, cov, nave, ...])

Generate noisy evoked data.

simulate_raw(info[, stc, trans, src, bem, ...])

Simulate raw data.

simulate_stc(src, labels, stc_data, tmin, tstep)

Simulate sources time courses from waveforms and labels.

simulate_sparse_stc(src, n_dipoles, times[, ...])

Generate sparse (n_dipoles) sources time courses from data_fun.

select_source_in_label(src, label[, ...])

Select source positions using a label.

SourceSimulator(src[, tstep, duration, ...])

Class to generate simulated Source Estimates.

mne.simulation.metrics:

Metrics module for compute stc-based metrics.

cosine_score(stc_true, stc_est[, per_sample])

Compute cosine similarity between 2 source estimates.

region_localization_error(stc_true, stc_est, src)

Compute region localization error (RLE) between 2 source estimates.

f1_score(stc_true, stc_est[, threshold, ...])

Compute the F1 score, also known as balanced F-score or F-measure.

precision_score(stc_true, stc_est[, ...])

Compute the precision.

recall_score(stc_true, stc_est[, threshold, ...])

Compute the recall.

roc_auc_score(stc_true, stc_est[, per_sample])

Compute ROC AUC between 2 source estimates.

spatial_deviation_error(stc_true, stc_est, src)

Compute the spatial deviation.

peak_position_error(stc_true, stc_est, src)

Compute the peak position error.