mne.scale_mri#
- mne.scale_mri(subject_from, subject_to, scale, overwrite=False, subjects_dir=None, skip_fiducials=False, labels=True, annot=False, *, on_defects='raise', verbose=None)[source]#
Create a scaled copy of an MRI subject.
- Parameters:
- subject_from
str
Name of the subject providing the MRI.
- subject_to
str
New subject name for which to save the scaled MRI.
- scale
float
| array_like, shape = (3,) The scaling factor (one or 3 parameters).
- overwrite
bool
If an MRI already exists for subject_to, overwrite it.
- subjects_dir
None
|str
Override the SUBJECTS_DIR environment variable.
- skip_fiducials
bool
Do not scale the MRI fiducials. If False (default), an IOError will be raised if no fiducials file can be found.
- labels
bool
Also scale all labels (default True).
- annot
bool
Copy
*.annot
files to the new location (default False).- on_defects‘raise’ | ‘warn’ | ‘ignore’
What to do if the surface is found to have topological defects. Can be
'raise'
(default) to raise an error,'warn'
to emit a warning, or'ignore'
to ignore when one or more defects are found. Note that a lot of computations in MNE-Python assume the surfaces to be topologically correct, topological defects may still make other computations (e.g.,mne.make_bem_model
andmne.make_bem_solution
) fail irrespective of this parameter.New in version 1.0.
- verbose
bool
|str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- subject_from
See also
scale_bem
Add a scaled BEM to a scaled MRI.
scale_labels
Add labels to a scaled MRI.
scale_source_space
Add a source space to a scaled MRI.
Notes
This function will automatically call
scale_bem()
,scale_labels()
, andscale_source_space()
based on expected filename patterns in the subject directory.
Examples using mne.scale_mri
#
Using an automated approach to coregistration