Updating BIDS datasets#

When working with electrophysiological data in the BIDS format, we usually do not have all the metadata stored in the Raw mne-python object. We can update the BIDS sidecar files via the update_sidecar_json function.

In this tutorial, we show how update_sidecar_json can be used to update and modify BIDS-formatted data.

# Authors: The MNE-BIDS developers
# SPDX-License-Identifier: BSD-3-Clause

Imports#

We are importing everything we need for this example:

from mne.datasets import somato

from mne_bids import (
    find_matching_paths,
    make_report,
    print_dir_tree,
    read_raw_bids,
    update_sidecar_json,
)

We will be using the MNE somato data, which is already stored in BIDS format. For more information, you can check out the respective example.

Download the somato BIDS dataset#

Download the data if it hasn’t been downloaded already, and return the path to the download directory. This directory is the so-called root of this BIDS dataset.

Using default location ~/mne_data for somato...

  0%|                                               | 0.00/611M [00:00<?, ?B/s]
  0%|                                       | 179k/611M [00:00<05:53, 1.73MB/s]
  0%|▏                                     | 2.28M/611M [00:00<00:47, 12.9MB/s]
  2%|▌                                     | 10.0M/611M [00:00<00:14, 42.0MB/s]
  3%|█                                     | 17.8M/611M [00:00<00:10, 56.0MB/s]
  4%|█▌                                    | 25.8M/611M [00:00<00:09, 64.8MB/s]
  6%|██                                    | 33.9M/611M [00:00<00:08, 70.2MB/s]
  7%|██▌                                   | 42.0M/611M [00:00<00:07, 73.8MB/s]
  8%|███                                   | 50.1M/611M [00:00<00:07, 76.1MB/s]
 10%|███▌                                  | 58.1M/611M [00:00<00:07, 77.4MB/s]
 11%|████                                  | 66.2M/611M [00:01<00:06, 78.5MB/s]
 12%|████▋                                 | 74.3M/611M [00:01<00:06, 79.3MB/s]
 13%|█████▏                                | 82.4M/611M [00:01<00:06, 79.7MB/s]
 15%|█████▋                                | 90.5M/611M [00:01<00:06, 80.0MB/s]
 16%|██████▏                               | 98.5M/611M [00:01<00:06, 79.2MB/s]
 17%|██████▊                                | 106M/611M [00:01<00:06, 78.8MB/s]
 19%|███████▎                               | 114M/611M [00:01<00:06, 79.4MB/s]
 20%|███████▊                               | 123M/611M [00:01<00:06, 79.9MB/s]
 21%|████████▎                              | 131M/611M [00:01<00:05, 80.2MB/s]
 23%|████████▊                              | 139M/611M [00:01<00:05, 80.2MB/s]
 24%|█████████▎                             | 147M/611M [00:02<00:05, 80.0MB/s]
 25%|█████████▉                             | 155M/611M [00:02<00:05, 80.0MB/s]
 27%|██████████▍                            | 163M/611M [00:02<00:05, 80.1MB/s]
 28%|██████████▉                            | 171M/611M [00:02<00:05, 80.5MB/s]
 29%|███████████▍                           | 179M/611M [00:02<00:05, 80.3MB/s]
 31%|███████████▉                           | 187M/611M [00:02<00:05, 80.3MB/s]
 32%|████████████▍                          | 195M/611M [00:02<00:05, 80.5MB/s]
 33%|████████████▉                          | 203M/611M [00:02<00:05, 80.8MB/s]
 35%|█████████████▍                         | 211M/611M [00:02<00:04, 80.8MB/s]
 36%|██████████████                         | 219M/611M [00:02<00:04, 80.4MB/s]
 37%|██████████████▌                        | 227M/611M [00:03<00:04, 80.2MB/s]
 39%|███████████████                        | 235M/611M [00:03<00:04, 80.2MB/s]
 40%|███████████████▌                       | 244M/611M [00:03<00:04, 82.4MB/s]
 41%|████████████████▏                      | 253M/611M [00:03<00:04, 84.4MB/s]
 43%|████████████████▋                      | 262M/611M [00:03<00:04, 85.7MB/s]
 44%|█████████████████▎                     | 271M/611M [00:03<00:03, 86.5MB/s]
 46%|█████████████████▊                     | 280M/611M [00:03<00:03, 86.8MB/s]
 47%|██████████████████▍                    | 289M/611M [00:03<00:03, 87.5MB/s]
 49%|██████████████████▉                    | 297M/611M [00:03<00:03, 87.9MB/s]
 50%|███████████████████▌                   | 306M/611M [00:03<00:03, 88.0MB/s]
 52%|████████████████████▏                  | 315M/611M [00:04<00:03, 88.3MB/s]
 53%|████████████████████▋                  | 324M/611M [00:04<00:03, 88.4MB/s]
 55%|█████████████████████▎                 | 333M/611M [00:04<00:03, 88.4MB/s]
 56%|█████████████████████▊                 | 342M/611M [00:04<00:03, 88.4MB/s]
 57%|██████████████████████▍                | 351M/611M [00:04<00:02, 88.3MB/s]
 59%|██████████████████████▉                | 359M/611M [00:04<00:02, 88.3MB/s]
 60%|███████████████████████▌               | 368M/611M [00:04<00:02, 88.4MB/s]
 62%|████████████████████████               | 377M/611M [00:04<00:02, 88.6MB/s]
 63%|████████████████████████▋              | 386M/611M [00:04<00:02, 88.6MB/s]
 65%|█████████████████████████▏             | 395M/611M [00:04<00:02, 88.6MB/s]
 66%|█████████████████████████▊             | 404M/611M [00:05<00:02, 88.6MB/s]
 68%|██████████████████████████▎            | 413M/611M [00:05<00:02, 88.6MB/s]
 69%|██████████████████████████▉            | 421M/611M [00:05<00:02, 85.8MB/s]
 70%|███████████████████████████▍           | 430M/611M [00:05<00:02, 78.6MB/s]
 72%|████████████████████████████           | 439M/611M [00:05<00:02, 80.4MB/s]
 73%|████████████████████████████▌          | 447M/611M [00:05<00:01, 82.7MB/s]
 75%|█████████████████████████████▏         | 456M/611M [00:05<00:01, 84.6MB/s]
 76%|█████████████████████████████▋         | 465M/611M [00:05<00:01, 85.7MB/s]
 78%|██████████████████████████████▎        | 474M/611M [00:05<00:01, 86.5MB/s]
 79%|██████████████████████████████▊        | 483M/611M [00:05<00:01, 86.8MB/s]
 81%|███████████████████████████████▍       | 492M/611M [00:06<00:01, 87.2MB/s]
 82%|███████████████████████████████▉       | 500M/611M [00:06<00:01, 87.5MB/s]
 83%|████████████████████████████████▌      | 509M/611M [00:06<00:01, 87.6MB/s]
 85%|█████████████████████████████████      | 518M/611M [00:06<00:01, 87.7MB/s]
 86%|█████████████████████████████████▋     | 527M/611M [00:06<00:00, 87.3MB/s]
 88%|██████████████████████████████████▏    | 536M/611M [00:06<00:00, 86.9MB/s]
 89%|██████████████████████████████████▊    | 544M/611M [00:06<00:00, 86.6MB/s]
 91%|███████████████████████████████████▎   | 553M/611M [00:06<00:00, 86.6MB/s]
 92%|███████████████████████████████████▊   | 562M/611M [00:06<00:00, 86.3MB/s]
 93%|████████████████████████████████████▍  | 570M/611M [00:06<00:00, 86.1MB/s]
 95%|████████████████████████████████████▉  | 579M/611M [00:07<00:00, 86.1MB/s]
 96%|█████████████████████████████████████▌ | 587M/611M [00:07<00:00, 86.0MB/s]
 98%|██████████████████████████████████████ | 596M/611M [00:07<00:00, 86.0MB/s]
 99%|██████████████████████████████████████▌| 605M/611M [00:07<00:00, 85.7MB/s]
  0%|                                               | 0.00/611M [00:00<?, ?B/s]
100%|███████████████████████████████████████| 611M/611M [00:00<00:00, 3.86TB/s]
Download complete in 17s (582.2 MB)

Explore the dataset contents#

We can use MNE-BIDS to print a tree of all included files and folders. We pass the max_depth parameter to mne_bids.print_dir_tree() to the output to three levels of folders, for better readability in this example.

print_dir_tree(bids_root, max_depth=3)

# We can generate a report of the existing dataset
print(make_report(bids_root))
|MNE-somato-data/
|--- CHANGES
|--- README
|--- dataset_description.json
|--- participants.json
|--- participants.tsv
|--- code/
|------ README
|------ convert_somato_data.py
|--- derivatives/
|------ freesurfer/
|--------- subjects/
|------ sub-01/
|--------- sub-01_task-somato-fwd.fif
|--- sub-01/
|------ sub-01_scans.tsv
|------ anat/
|--------- sub-01_T1w.json
|--------- sub-01_T1w.nii.gz
|------ meg/
|--------- sub-01_coordsystem.json
|--------- sub-01_task-somato_channels.tsv
|--------- sub-01_task-somato_events.tsv
|--------- sub-01_task-somato_meg.fif
|--------- sub-01_task-somato_meg.json
Summarizing participants.tsv /home/runner/mne_data/MNE-somato-data/participants.tsv...
Summarizing scans.tsv files [PosixPath('/home/runner/mne_data/MNE-somato-data/sub-01/sub-01_scans.tsv')]...
The participant template found: comprised of 1 male and 0 female participants;
handedness were all unknown;
ages all unknown
 The MNE-somato-data-bids dataset was created by Lauri Parkkonen and conforms to
BIDS version 1.2.0. This report was generated with MNE-BIDS
(https://doi.org/10.21105/joss.01896). The dataset consists of 1 participants
(comprised of 1 male and 0 female participants; handedness were all unknown;
ages all unknown) . Data was recorded using an MEG system (Elekta) sampled at
300.31 Hz with line noise at 50 Hz. There was 1 scan in total. Recording
durations ranged from 897.08 to 897.08 seconds (mean = 897.08, std = 0.0), for a
total of 897.08 seconds of data recorded over all scans. For each dataset, there
were on average 316.0 (std = 0.0) recording channels per scan, out of which
316.0 (std = 0.0) were used in analysis (0.0 +/- 0.0 were removed from
analysis).

Update the sidecar JSON dataset contents#

We can use MNE-BIDS to update all sidecar files for a matching BIDSPath object. We then pass in a dictionary (or JSON file) to update all matching metadata fields within the BIDS dataset.

# Search for all matching BIDSPaths in the root directory
bids_root = somato.data_path()
suffix = "meg"
extension = ".fif"

bids_paths = find_matching_paths(bids_root, suffixes=suffix, extensions=extension)
# We can now retrieve a list of all MEG-related files in the dataset:
print(bids_paths)

# Define a sidecar update as a dictionary
entries = {
    "PowerLineFrequency": 60,
    "Manufacturer": "MEGIN",
    "InstitutionName": "Martinos Center",
}

# Note: ``update_sidecar_json`` will perform essentially a
# dictionary update to your sidecar json file, so be absolutely sure
# that the ``entries`` are defined with the proper fields specified
# by BIDS. For example, if you are updating the ``coordsystem.json``
# file, then you don't want to include ``PowerLineFrequency`` in
# ``entries``.
#
# Now update all sidecar fields according to our updating dictionary
bids_path = bids_paths[0]
sidecar_path = bids_path.copy().update(extension=".json")
update_sidecar_json(bids_path=sidecar_path, entries=entries)
[BIDSPath(
root: /home/runner/mne_data/MNE-somato-data
datatype: meg
basename: sub-01_task-somato_meg.fif)]
Writing '/home/runner/mne_data/MNE-somato-data/sub-01/meg/sub-01_task-somato_meg.json'...

Read the updated dataset#

# new line frequency is now 60 Hz
raw = read_raw_bids(bids_path=bids_path)
print(raw.info["line_freq"])
Opening raw data file /home/runner/mne_data/MNE-somato-data/sub-01/meg/sub-01_task-somato_meg.fif...
    Range : 237600 ... 506999 =    791.189 ...  1688.266 secs
Ready.
Reading events from /home/runner/mne_data/MNE-somato-data/sub-01/meg/sub-01_task-somato_events.tsv.
Reading channel info from /home/runner/mne_data/MNE-somato-data/sub-01/meg/sub-01_task-somato_channels.tsv.
Not fully anonymizing info - keeping his_id, sex, and hand info
60.0

Generate a new report based on the updated metadata.

# The manufacturer was changed to ``MEGIN``
print(make_report(bids_root))
Summarizing participants.tsv /home/runner/mne_data/MNE-somato-data/participants.tsv...
Summarizing scans.tsv files [PosixPath('/home/runner/mne_data/MNE-somato-data/sub-01/sub-01_scans.tsv')]...
The participant template found: comprised of 1 male and 0 female participants;
handedness were all unknown;
ages all unknown
 The MNE-somato-data-bids dataset was created by Lauri Parkkonen and conforms to
BIDS version 1.2.0. This report was generated with MNE-BIDS
(https://doi.org/10.21105/joss.01896). The dataset consists of 1 participants
(comprised of 1 male and 0 female participants; handedness were all unknown;
ages all unknown) . Data was recorded using an MEG system (MEGIN) sampled at
300.31 Hz with line noise at 60 Hz. There was 1 scan in total. Recording
durations ranged from 897.08 to 897.08 seconds (mean = 897.08, std = 0.0), for a
total of 897.08 seconds of data recorded over all scans. For each dataset, there
were on average 316.0 (std = 0.0) recording channels per scan, out of which
316.0 (std = 0.0) were used in analysis (0.0 +/- 0.0 were removed from
analysis).

We can revert the changes by updating the sidecar again.

# update the sidecar data to have a new PowerLineFrequency
entries["Manufacturer"] = "Elekta"
entries["PowerLineFrequency"] = 50
update_sidecar_json(bids_path=sidecar_path, entries=entries)
Writing '/home/runner/mne_data/MNE-somato-data/sub-01/meg/sub-01_task-somato_meg.json'...

Now let us inspect the dataset again by generating the report again. Now that update_sidecar_json was called, the metadata will be updated.

# The power line frequency should now change back to 50 Hz
raw = read_raw_bids(bids_path=bids_path)
print(raw.info["line_freq"])

# Generate the report with updated fields
print(make_report(bids_root))
Opening raw data file /home/runner/mne_data/MNE-somato-data/sub-01/meg/sub-01_task-somato_meg.fif...
    Range : 237600 ... 506999 =    791.189 ...  1688.266 secs
Ready.
Reading events from /home/runner/mne_data/MNE-somato-data/sub-01/meg/sub-01_task-somato_events.tsv.
Reading channel info from /home/runner/mne_data/MNE-somato-data/sub-01/meg/sub-01_task-somato_channels.tsv.
Not fully anonymizing info - keeping his_id, sex, and hand info
50.0
Summarizing participants.tsv /home/runner/mne_data/MNE-somato-data/participants.tsv...
Summarizing scans.tsv files [PosixPath('/home/runner/mne_data/MNE-somato-data/sub-01/sub-01_scans.tsv')]...
The participant template found: comprised of 1 male and 0 female participants;
handedness were all unknown;
ages all unknown
 The MNE-somato-data-bids dataset was created by Lauri Parkkonen and conforms to
BIDS version 1.2.0. This report was generated with MNE-BIDS
(https://doi.org/10.21105/joss.01896). The dataset consists of 1 participants
(comprised of 1 male and 0 female participants; handedness were all unknown;
ages all unknown) . Data was recorded using an MEG system (Elekta) sampled at
300.31 Hz with line noise at 50 Hz. There was 1 scan in total. Recording
durations ranged from 897.08 to 897.08 seconds (mean = 897.08, std = 0.0), for a
total of 897.08 seconds of data recorded over all scans. For each dataset, there
were on average 316.0 (std = 0.0) recording channels per scan, out of which
316.0 (std = 0.0) were used in analysis (0.0 +/- 0.0 were removed from
analysis).

Total running time of the script: (0 minutes 17.661 seconds)

Gallery generated by Sphinx-Gallery