mne.make_field_map#
- mne.make_field_map(evoked, trans='auto', subject=None, subjects_dir=None, ch_type=None, mode='fast', meg_surf='helmet', origin=(0.0, 0.0, 0.04), n_jobs=1, verbose=None)[source]#
Compute surface maps used for field display in 3D.
- Parameters
- evoked
Evoked
|Epochs
|Raw
The measurement file. Need to have info attribute.
- trans
str
| ‘auto’ |None
The full path to the
*-trans.fif
file produced during coregistration. If present or found using ‘auto’ the maps will be in MRI coordinates. If None, map for EEG data will not be available.- subject
str
|None
The subject name corresponding to FreeSurfer environment variable SUBJECT. If None, map for EEG data will not be available.
- subjects_dir
str
The path to the freesurfer subjects reconstructions. It corresponds to Freesurfer environment variable SUBJECTS_DIR.
- ch_type
None
| ‘eeg’ | ‘meg’ If None, a map for each available channel type will be returned. Else only the specified type will be used.
- mode‘accurate’ | ‘fast’
Either
'accurate'
or'fast'
, determines the quality of the Legendre polynomial expansion used.'fast'
should be sufficient for most applications.- meg_surf‘helmet’ | ‘head’
Should be
'helmet'
or'head'
to specify in which surface to compute the MEG field map. The default value is'helmet'
.- originarray-like, shape (3,) | ‘auto’
Origin of the sphere in the head coordinate frame and in meters. Can be
'auto'
, which means a head-digitization-based origin fit. Default is(0., 0., 0.04)
.New in version 0.11.
- n_jobs
int
The number of jobs to run in parallel (default
1
). If-1
, it is set to the number of CPU cores. Requires thejoblib
package.- verbosebool |
str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- evoked
- Returns
- surf_maps
list
The surface maps to be used for field plots. The list contains separate ones for MEG and EEG (if both MEG and EEG are present).
- surf_maps
Examples using mne.make_field_map
#
From raw data to dSPM on SPM Faces dataset