mne.viz.plot_volume_source_estimates#
- mne.viz.plot_volume_source_estimates(stc, src, subject=None, subjects_dir=None, mode='stat_map', bg_img='T1.mgz', colorbar=True, colormap='auto', clim='auto', transparent=None, show=True, initial_time=None, initial_pos=None, verbose=None)[source]#
Plot Nutmeg style volumetric source estimates using nilearn.
- Parameters
- stc
VectorSourceEstimate The vector source estimate to plot.
- srcinstance of
SourceSpaces| instance ofSourceMorph The source space. Can also be a SourceMorph to morph the STC to a new subject (see Examples).
Changed in version 0.18: Support for
SpatialImage.- subject
str|None The FreeSurfer subject name. If
None,stc.subjectwill be used.- subjects_dirpath-like |
None The path to the directory containing the FreeSurfer subjects reconstructions. If
None, defaults to theSUBJECTS_DIRenvironment variable.- mode
str The plotting mode to use. Either ‘stat_map’ (default) or ‘glass_brain’. For “glass_brain”, activation absolute values are displayed after being transformed to a standard MNI brain.
- bg_imginstance of
SpatialImage|str The background image used in the nilearn plotting function. Can also be a string to use the
bg_imgfile in the subject’s MRI directory (default is'T1.mgz'). Not used in “glass brain” plotting.- colorbarbool, optional
If True, display a colorbar on the right of the plots.
- colormap
str|np.ndarrayoffloat, shape(n_colors, 3 | 4) Name of colormap to use or a custom look up table. If array, must be (n x 3) or (n x 4) array for with RGB or RGBA values between 0 and 255.
- clim
str|dict Colorbar properties specification. If ‘auto’, set clim automatically based on data percentiles. If dict, should contain:
kind‘value’ | ‘percent’Flag to specify type of limits.
limslist | np.ndarray | tuple of float, 3 elementsLower, middle, and upper bounds for colormap.
pos_limslist | np.ndarray | tuple of float, 3 elementsLower, middle, and upper bound for colormap. Positive values will be mirrored directly across zero during colormap construction to obtain negative control points.
Note
Only one of
limsorpos_limsshould be provided. Only sequential colormaps should be used withlims, and only divergent colormaps should be used withpos_lims.- transparentbool |
None If True: use a linear transparency between fmin and fmid and make values below fmin fully transparent (symmetrically for divergent colormaps). None will choose automatically based on colormap type.
- showbool
Show figures if True. Defaults to True.
- initial_time
float|None The initial time to plot. Can be None (default) to use the time point with the maximal absolute value activation across all voxels or the
initial_posvoxel (ifinitial_pos is Noneor not, respectively).New in version 0.19.
- initial_pos
ndarray, shape (3,) |None The initial position to use (in m). Can be None (default) to use the voxel with the maximum absolute value activation across all time points or at
initial_time(ifinitial_time is Noneor not, respectively).New in version 0.19.
- verbosebool |
str|int|None Control verbosity of the logging output. If
None, use the default verbosity level. See the logging documentation andmne.verbose()for details. Should only be passed as a keyword argument.
- stc
- Returns
- figinstance of
Figure The figure.
- figinstance of
Notes
Click on any of the anatomical slices to explore the time series. Clicking on any time point will bring up the corresponding anatomical map.
The left and right arrow keys can be used to navigate in time. To move in time by larger steps, use shift+left and shift+right.
In
'glass_brain'mode, values are transformed to the standard MNI brain using the FreeSurfer Talairach transformation$SUBJECTS_DIR/$SUBJECT/mri/transforms/talairach.xfm.New in version 0.17.
Changed in version 0.19: MRI volumes are automatically transformed to MNI space in
'glass_brain'mode.Examples
Passing a
mne.SourceMorphas thesrcparameter can be useful for plotting in a different subject’s space (here, a'sample'STC in'fsaverage'’s space):>>> morph = mne.compute_source_morph(src_sample, subject_to='fsaverage') >>> fig = stc_vol_sample.plot(morph)