mne.preprocessing.compute_current_source_density#
- mne.preprocessing.compute_current_source_density(inst, sphere='auto', lambda2=1e-05, stiffness=4, n_legendre_terms=50, copy=True)[source]#
Get the current source density (CSD) transformation.
Transformation based on spherical spline surface Laplacian 1234.
- Parameters
- instinstance of
Raw
,Epochs
orEvoked
The data to be transformed.
- spherearray-like, shape (4,) |
str
The sphere, head-model of the form (x, y, z, r) where x, y, z is the center of the sphere and r is the radius in meters. Can also be “auto” to use a digitization-based fit.
- lambda2
float
Regularization parameter, produces smoothness. Defaults to 1e-5.
- stiffness
float
Stiffness of the spline.
- n_legendre_terms
int
Number of Legendre terms to evaluate.
- copybool
Whether to overwrite instance data or create a copy.
- instinstance of
- Returns
Notes
New in version 0.20.
References
- 1
F. Perrin, O. Bertrand, and J. Pernier. Scalp Current Density Mapping: Value and Estimation from Potential Data. IEEE Transactions on Biomedical Engineering, BME-34(4):283–288, 1987. doi:10.1109/TBME.1987.326089.
- 2
François M. Perrin, Jacques Pernier, Olivier M. Bertrand, and Jean Franćois Echallier. Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2):184–187, 1989. doi:10.1016/0013-4694(89)90180-6.
- 3
Mike X. Cohen. Analyzing Neural Time Series Data: Theory and Practice. MIT Press, 2014.
- 4
Jürgen Kayser and Craig E. Tenke. On the benefits of using surface Laplacian (Current Source Density) methodology in electrophysiology. International journal of psychophysiology : official journal of the International Organization of Psychophysiology, 97(3):171–173, 2015. doi:10.1016/j.ijpsycho.2015.06.001.
Examples using mne.preprocessing.compute_current_source_density
#
Transform EEG data using current source density (CSD)