mne.time_frequency.csd_array_fourier¶
- mne.time_frequency.csd_array_fourier(X, sfreq, t0=0, fmin=0, fmax=inf, tmin=None, tmax=None, ch_names=None, n_fft=None, projs=None, n_jobs=1, verbose=None)[source]¶
Estimate cross-spectral density from an array using short-time fourier.
- Parameters
- Xarray_like, shape (n_epochs, n_channels, n_times)
The time series data consisting of n_epochs separate observations of signals with n_channels time-series of length n_times.
- sfreq
float
Sampling frequency of observations.
- t0
float
Time of the first sample relative to the onset of the epoch, in seconds. Defaults to 0.
- fmin
float
Minimum frequency of interest, in Hertz.
- fmax
float
|numpy.inf
Maximum frequency of interest, in Hertz.
- tmin
float
|None
Minimum time instant to consider, in seconds. If
None
start at first sample.- tmax
float
|None
Maximum time instant to consider, in seconds. If
None
end at last sample.- ch_names
list
ofstr
|None
A name for each time series. If
None
(the default), the series will be named ‘SERIES###’.- n_fft
int
|None
Length of the FFT. If
None
, the exact number of samples betweentmin
andtmax
will be used.- projs
list
ofProjection
|None
List of projectors to store in the CSD object. Defaults to
None
, which means no projectors are stored.- n_jobs
int
The number of jobs to run in parallel (default 1). Requires the joblib package.
- verbosebool,
str
,int
, orNone
If not None, override default verbose level (see
mne.verbose()
and Logging documentation for more). If used, it should be passed as a keyword-argument only.
- Returns
- csdinstance of
CrossSpectralDensity
The computed cross-spectral density.
- csdinstance of