mne.minimum_norm.apply_inverse¶
- mne.minimum_norm.apply_inverse(evoked, inverse_operator, lambda2=0.1111111111111111, method='dSPM', pick_ori=None, prepared=False, label=None, method_params=None, return_residual=False, use_cps=True, verbose=None)[source]¶
- Apply inverse operator to evoked data. - Parameters
- evokedEvokedobject
- Evoked data. 
- inverse_operatorinstance of InverseOperator
- Inverse operator. 
- lambda2float
- The regularization parameter. 
- method“MNE” | “dSPM” | “sLORETA” | “eLORETA”
- Use minimum norm 1, dSPM (default) 2, sLORETA 3, or eLORETA 4. 
- pick_oriNone| “normal” | “vector”
- Options: - None
- Pooling is performed by taking the norm of loose/free orientations. In case of a fixed source space no norm is computed leading to signed source activity. 
 
- "normal"
- Only the normal to the cortical surface is kept. This is only implemented when working with loose orientations. 
 
- "vector"
- No pooling of the orientations is done, and the vector result will be returned in the form of a - mne.VectorSourceEstimateobject.
 
 
- preparedbool
- If True, do not call - prepare_inverse_operator().
- labelLabel|None
- Restricts the source estimates to a given label. If None, source estimates will be computed for the entire source space. 
- method_paramsdict|None
- Additional options for eLORETA. See Notes for details. - New in version 0.16. 
- return_residualbool
- If True (default False), return the residual evoked data. Cannot be used with - method=='eLORETA'.- New in version 0.17. 
- use_cpsbool
- Whether to use cortical patch statistics to define normal orientations for surfaces (default True). - Only used when the inverse is free orientation ( - loose=1.), not in surface orientation, and- pick_ori='normal'.- New in version 0.20. 
- verbosebool, str,int, orNone
- If not None, override default verbose level (see - mne.verbose()and Logging documentation for more). If used, it should be passed as a keyword-argument only.
 
- evoked
- Returns
- stcSourceEstimate|VectorSourceEstimate|VolSourceEstimate
- The source estimates. 
- residualinstance of Evoked
- The residual evoked data, only returned if return_residual is True. 
 
- stc
 - See also - apply_inverse_raw
- Apply inverse operator to raw object. 
- apply_inverse_epochs
- Apply inverse operator to epochs object. 
 - Notes - Currently only the - method='eLORETA'has additional options. It performs an iterative fit with a convergence criterion, so you can pass a- method_params- dictwith string keys mapping to values for:- ‘eps’float
- The convergence epsilon (default 1e-6). 
- ‘max_iter’int
- The maximum number of iterations (default 20). If less regularization is applied, more iterations may be necessary. 
- ‘force_equal’bool
- Force all eLORETA weights for each direction for a given location equal. The default is None, which means - Truefor loose-orientation inverses and- Falsefor free- and fixed-orientation inverses. See below.
 - The eLORETA paper 4 defines how to compute inverses for fixed- and free-orientation inverses. In the free orientation case, the X/Y/Z orientation triplet for each location is effectively multiplied by a 3x3 weight matrix. This is the behavior obtained with - force_equal=Falseparameter.- However, other noise normalization methods (dSPM, sLORETA) multiply all orientations for a given location by a single value. Using - force_equal=Truemimics this behavior by modifying the iterative algorithm to choose uniform weights (equivalent to a 3x3 diagonal matrix with equal entries).- It is necessary to use - force_equal=Truewith loose orientation inverses (e.g.,- loose=0.2), otherwise the solution resembles a free-orientation inverse (- loose=1.0). It is thus recommended to use- force_equal=Truefor loose orientation and- force_equal=Falsefor free orientation inverses. This is the behavior used when the parameter- force_equal=None(default behavior).- References - 1
- Matti S. Hämäläinen and Ilmoniemi Ilmoniemi, Risto J. Interpreting magnetic fields of the brain: minimum norm estimates. Medical & Biological Engineering & Computing, 32(1):35–42, 1994. doi:10.1007/BF02512476. 
- 2
- Anders M. Dale, Arthur K. Liu, Bruce R. Fischl, Randy L. Buckner, John W. Belliveau, Jeffrey D. Lewine, and Eric Halgren. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 26(1):55–67, 2000. doi:10.1016/S0896-6273(00)81138-1. 
- 3
- Roberto D. Pascual-Marqui. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24(D):5–12, 2002. 
- 4(1,2)
- Roberto D. Pascual-Marqui, Dietrich Lehmann, Martha Koukkou, Kieko Kochi, Peter Anderer, Bernd Saletu, Hideaki Tanaka, Koichi Hirata, E. Roy John, Leslie Prichep, Rolando Biscay-Lirio, and Toshihiko Kinoshita. Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1952):3768–3784, 2011. doi:10.1098/rsta.2011.0081. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
