mne.SourceMorph¶
- class mne.SourceMorph(subject_from, subject_to, kind, zooms, niter_affine, niter_sdr, spacing, smooth, xhemi, morph_mat, vertices_to, shape, affine, pre_affine, sdr_morph, src_data, vol_morph_mat, verbose=None)[source]¶
- Morph source space data from one subject to another. - Note - This class should not be instantiated directly. Use - mne.compute_source_morph()instead.- Parameters
- subject_fromstr|None
- Name of the subject from which to morph as named in the SUBJECTS_DIR. 
- subject_tostr|array|listofarray
- Name of the subject on which to morph as named in the SUBJECTS_DIR. The default is ‘fsaverage’. If morphing a volume source space, subject_to can be the path to a MRI volume. Can also be a list of two arrays if morphing to hemisphere surfaces. 
- kindstr|None
- Kind of source estimate. E.g. ‘volume’ or ‘surface’. 
- zoomsfloat|tuple
- niter_affinetupleofint
- Number of levels ( - len(niter_affine)) and number of iterations per level - for each successive stage of iterative refinement - to perform the affine transform.
- niter_sdrtupleofint
- Number of levels ( - len(niter_sdr)) and number of iterations per level - for each successive stage of iterative refinement - to perform the Symmetric Diffeomorphic Registration (sdr) transform 1.
- spacingint|list|None
- smoothint|str|None
- xhemibool
- Morph across hemisphere. 
- morph_matscipy.sparse.csr_matrix
- The sparse surface morphing matrix for spherical surface based morphing 2. 
- vertices_tolistofndarray
- The destination surface vertices. 
- shapetuple
- The volume MRI shape. 
- affinendarray
- The volume MRI affine. 
- pre_affineinstance of dipy.align.AffineMap
- The transformation that is applied before the before - sdr_morph.
- sdr_morphinstance of dipy.align.DiffeomorphicMap
- The class that applies the the symmetric diffeomorphic registration (SDR) morph. 
- src_datadict
- Additional source data necessary to perform morphing. 
- vol_morph_matscipy.sparse.csr_matrix|None
- The volumetric morph matrix, if - compute_vol_morph_mat()was used.
- verbosebool, str,int, orNone
- If not None, override default verbose level (see - mne.verbose()and Logging documentation for more). If used, it should be passed as a keyword-argument only.
 
- subject_from
 - Notes - New in version 0.17. - References - 1
- Brian B. Avants, Charles L. Epstein, Murray C. Grossman, and James C. Gee. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1):26–41, 2008. doi:10.1016/j.media.2007.06.004. 
- 2
- Douglas N. Greve, Lise Van der Haegen, Qing Cai, Steven Stufflebeam, Mert R. Sabuncu, Bruce Fischl, and Marc Brysbaert. A surface-based analysis of language lateralization and cortical asymmetry. Journal of Cognitive Neuroscience, 25(9):1477–1492, 2013. doi:10.1162/jocn_a_00405. 
 - Methods - __hash__(/)- Return hash(self). - apply(stc_from[, output, mri_resolution, …])- Morph source space data. - compute_vol_morph_mat(*[, verbose])- Compute the sparse matrix representation of the volumetric morph. - save(fname[, overwrite, verbose])- Save the morph for source estimates to a file. - apply(stc_from, output='stc', mri_resolution=False, mri_space=None, verbose=None)[source]¶
- Morph source space data. - Parameters
- stc_fromVolSourceEstimate|VolVectorSourceEstimate|SourceEstimate|VectorSourceEstimate
- The source estimate to morph. 
- outputstr
- Can be ‘stc’ (default) or possibly ‘nifti1’, or ‘nifti2’ when working with a volume source space defined on a regular grid. 
- mri_resolutionbool | tuple|int|float
- If True the image is saved in MRI resolution. Default False. WARNING: if you have many time points the file produced can be huge. The default is mri_resolution=False. 
- mri_spacebool | None
- Whether the image to world registration should be in mri space. The default (None) is mri_space=mri_resolution. 
- verbosebool, str,int, orNone
- If not None, override default verbose level (see - mne.verbose()and Logging documentation for more). If used, it should be passed as a keyword-argument only. Defaults to self.verbose.
 
- stc_from
- Returns
- stc_toVolSourceEstimate|SourceEstimate|VectorSourceEstimate|Nifti1Image|Nifti2Image
- The morphed source estimates. 
 
- stc_to
 - Examples using - apply:
 - compute_vol_morph_mat(*, verbose=None)[source]¶
- Compute the sparse matrix representation of the volumetric morph. - Parameters
- verbosebool, str,int, orNone
- If not None, override default verbose level (see - mne.verbose()and Logging documentation for more). If used, it should be passed as a keyword-argument only. Defaults to self.verbose.
 
- verbosebool, 
- Returns
- morphinstance of SourceMorph
- The instance (modified in-place). 
 
- morphinstance of 
 - Notes - For a volumetric morph, this will compute the morph for an identity source volume, i.e., with one source vertex active at a time, and store the result as a - sparsemorphing matrix. This takes a long time (minutes) to compute initially, but drastically speeds up- apply()for STCs, so it can be beneficial when many time points or many morphs (i.e., greater than the number of volumetric- src_fromvertices) will be performed.- When calling - save(), this sparse morphing matrix is saved with the instance, so this only needs to be called once. This function does nothing if the morph matrix has already been computed, or if there is no volume morphing necessary.- New in version 0.22. - Examples using - compute_vol_morph_mat:
 - save(fname, overwrite=False, verbose=None)[source]¶
- Save the morph for source estimates to a file. - Parameters
- fnamestr
- The stem of the file name. ‘-morph.h5’ will be added if fname does not end with ‘.h5’. 
- overwritebool
- If True (default False), overwrite the destination file if it exists. 
- verbosebool, str,int, orNone
- If not None, override default verbose level (see - mne.verbose()and Logging documentation for more). If used, it should be passed as a keyword-argument only. Defaults to self.verbose.
 
- fname
 
 
 
 
 
 
 
