Note
Go to the end to download the full example code.
Decoding sensor space data with generalization across time and conditions#
This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.
# Authors: Jean-Rémi King <jeanremi.king@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator
print(__doc__)
# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads") # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin") # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
"Auditory/Left": 1,
"Auditory/Right": 2,
"Visual/Left": 3,
"Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
raw,
events,
event_id=event_id,
tmin=tmin,
tmax=tmax,
proj=True,
picks=picks,
baseline=None,
preload=True,
reject=dict(mag=5e-12),
decim=decim,
verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Reading 0 ... 41699 = 0.000 ... 277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)
[Parallel(n_jobs=1)]: Done 17 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 71 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 161 tasks | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 287 tasks | elapsed: 0.6s
We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.
clf = make_pipeline(
StandardScaler(),
LogisticRegression(solver="liblinear"), # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)
# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
0%| | Fitting GeneralizingEstimator : 0/35 [00:00<?, ?it/s]
6%|▌ | Fitting GeneralizingEstimator : 2/35 [00:00<00:00, 54.89it/s]
11%|█▏ | Fitting GeneralizingEstimator : 4/35 [00:00<00:00, 57.12it/s]
20%|██ | Fitting GeneralizingEstimator : 7/35 [00:00<00:00, 68.08it/s]
26%|██▌ | Fitting GeneralizingEstimator : 9/35 [00:00<00:00, 65.79it/s]
37%|███▋ | Fitting GeneralizingEstimator : 13/35 [00:00<00:00, 77.22it/s]
43%|████▎ | Fitting GeneralizingEstimator : 15/35 [00:00<00:00, 73.91it/s]
54%|█████▍ | Fitting GeneralizingEstimator : 19/35 [00:00<00:00, 81.18it/s]
60%|██████ | Fitting GeneralizingEstimator : 21/35 [00:00<00:00, 77.97it/s]
69%|██████▊ | Fitting GeneralizingEstimator : 24/35 [00:00<00:00, 79.48it/s]
77%|███████▋ | Fitting GeneralizingEstimator : 27/35 [00:00<00:00, 80.68it/s]
83%|████████▎ | Fitting GeneralizingEstimator : 29/35 [00:00<00:00, 77.70it/s]
91%|█████████▏| Fitting GeneralizingEstimator : 32/35 [00:00<00:00, 78.94it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00, 80.51it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00, 79.41it/s]
Score on the epochs where the stimulus was presented to the right.
scores = time_gen.score(
X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
0%| | Scoring GeneralizingEstimator : 0/1225 [00:00<?, ?it/s]
1%| | Scoring GeneralizingEstimator : 12/1225 [00:00<00:03, 333.55it/s]
2%|▏ | Scoring GeneralizingEstimator : 24/1225 [00:00<00:03, 343.22it/s]
3%|▎ | Scoring GeneralizingEstimator : 35/1225 [00:00<00:03, 337.40it/s]
4%|▍ | Scoring GeneralizingEstimator : 47/1225 [00:00<00:03, 342.38it/s]
5%|▍ | Scoring GeneralizingEstimator : 60/1225 [00:00<00:03, 350.89it/s]
6%|▌ | Scoring GeneralizingEstimator : 71/1225 [00:00<00:03, 346.25it/s]
7%|▋ | Scoring GeneralizingEstimator : 83/1225 [00:00<00:03, 347.29it/s]
8%|▊ | Scoring GeneralizingEstimator : 95/1225 [00:00<00:03, 348.31it/s]
9%|▊ | Scoring GeneralizingEstimator : 107/1225 [00:00<00:03, 346.76it/s]
10%|▉ | Scoring GeneralizingEstimator : 118/1225 [00:00<00:03, 344.31it/s]
11%|█ | Scoring GeneralizingEstimator : 129/1225 [00:00<00:03, 342.23it/s]
12%|█▏ | Scoring GeneralizingEstimator : 141/1225 [00:00<00:03, 343.72it/s]
12%|█▏ | Scoring GeneralizingEstimator : 153/1225 [00:00<00:03, 345.06it/s]
13%|█▎ | Scoring GeneralizingEstimator : 165/1225 [00:00<00:03, 345.81it/s]
14%|█▍ | Scoring GeneralizingEstimator : 176/1225 [00:00<00:03, 343.62it/s]
15%|█▌ | Scoring GeneralizingEstimator : 188/1225 [00:00<00:03, 343.20it/s]
16%|█▋ | Scoring GeneralizingEstimator : 200/1225 [00:00<00:02, 344.33it/s]
17%|█▋ | Scoring GeneralizingEstimator : 211/1225 [00:00<00:02, 342.84it/s]
18%|█▊ | Scoring GeneralizingEstimator : 223/1225 [00:00<00:02, 343.84it/s]
19%|█▉ | Scoring GeneralizingEstimator : 234/1225 [00:00<00:02, 342.54it/s]
20%|██ | Scoring GeneralizingEstimator : 246/1225 [00:00<00:02, 343.45it/s]
21%|██ | Scoring GeneralizingEstimator : 258/1225 [00:00<00:02, 342.35it/s]
22%|██▏ | Scoring GeneralizingEstimator : 270/1225 [00:00<00:02, 343.36it/s]
23%|██▎ | Scoring GeneralizingEstimator : 282/1225 [00:00<00:02, 343.93it/s]
24%|██▍ | Scoring GeneralizingEstimator : 293/1225 [00:00<00:02, 342.78it/s]
25%|██▍ | Scoring GeneralizingEstimator : 305/1225 [00:00<00:02, 343.71it/s]
26%|██▌ | Scoring GeneralizingEstimator : 316/1225 [00:00<00:02, 342.54it/s]
27%|██▋ | Scoring GeneralizingEstimator : 328/1225 [00:00<00:02, 343.33it/s]
28%|██▊ | Scoring GeneralizingEstimator : 340/1225 [00:00<00:02, 342.60it/s]
29%|██▊ | Scoring GeneralizingEstimator : 352/1225 [00:01<00:02, 343.48it/s]
30%|██▉ | Scoring GeneralizingEstimator : 363/1225 [00:01<00:02, 342.37it/s]
31%|███ | Scoring GeneralizingEstimator : 375/1225 [00:01<00:02, 343.15it/s]
32%|███▏ | Scoring GeneralizingEstimator : 387/1225 [00:01<00:02, 343.76it/s]
33%|███▎ | Scoring GeneralizingEstimator : 399/1225 [00:01<00:02, 344.37it/s]
34%|███▍ | Scoring GeneralizingEstimator : 414/1225 [00:01<00:02, 338.33it/s]
34%|███▍ | Scoring GeneralizingEstimator : 420/1225 [00:01<00:02, 328.11it/s]
35%|███▌ | Scoring GeneralizingEstimator : 430/1225 [00:01<00:02, 326.32it/s]
36%|███▌ | Scoring GeneralizingEstimator : 441/1225 [00:01<00:02, 326.26it/s]
37%|███▋ | Scoring GeneralizingEstimator : 454/1225 [00:01<00:02, 329.57it/s]
38%|███▊ | Scoring GeneralizingEstimator : 466/1225 [00:01<00:02, 331.03it/s]
39%|███▉ | Scoring GeneralizingEstimator : 478/1225 [00:01<00:02, 332.39it/s]
40%|███▉ | Scoring GeneralizingEstimator : 489/1225 [00:01<00:02, 331.79it/s]
41%|████ | Scoring GeneralizingEstimator : 500/1225 [00:01<00:02, 331.46it/s]
42%|████▏ | Scoring GeneralizingEstimator : 511/1225 [00:01<00:02, 330.29it/s]
43%|████▎ | Scoring GeneralizingEstimator : 522/1225 [00:01<00:02, 329.97it/s]
43%|████▎ | Scoring GeneralizingEstimator : 532/1225 [00:01<00:02, 328.07it/s]
44%|████▍ | Scoring GeneralizingEstimator : 544/1225 [00:01<00:02, 329.35it/s]
45%|████▌ | Scoring GeneralizingEstimator : 556/1225 [00:01<00:02, 330.80it/s]
46%|████▋ | Scoring GeneralizingEstimator : 568/1225 [00:01<00:01, 331.71it/s]
47%|████▋ | Scoring GeneralizingEstimator : 579/1225 [00:01<00:01, 331.24it/s]
48%|████▊ | Scoring GeneralizingEstimator : 591/1225 [00:01<00:01, 332.51it/s]
49%|████▉ | Scoring GeneralizingEstimator : 602/1225 [00:01<00:01, 332.14it/s]
50%|█████ | Scoring GeneralizingEstimator : 614/1225 [00:01<00:01, 332.80it/s]
51%|█████ | Scoring GeneralizingEstimator : 627/1225 [00:01<00:01, 334.60it/s]
52%|█████▏ | Scoring GeneralizingEstimator : 639/1225 [00:01<00:01, 335.34it/s]
53%|█████▎ | Scoring GeneralizingEstimator : 650/1225 [00:01<00:01, 334.45it/s]
54%|█████▍ | Scoring GeneralizingEstimator : 662/1225 [00:01<00:01, 335.53it/s]
55%|█████▌ | Scoring GeneralizingEstimator : 674/1225 [00:02<00:01, 336.62it/s]
56%|█████▌ | Scoring GeneralizingEstimator : 686/1225 [00:02<00:01, 337.44it/s]
57%|█████▋ | Scoring GeneralizingEstimator : 698/1225 [00:02<00:01, 337.92it/s]
58%|█████▊ | Scoring GeneralizingEstimator : 709/1225 [00:02<00:01, 337.23it/s]
59%|█████▉ | Scoring GeneralizingEstimator : 721/1225 [00:02<00:01, 338.22it/s]
60%|█████▉ | Scoring GeneralizingEstimator : 733/1225 [00:02<00:01, 338.86it/s]
61%|██████ | Scoring GeneralizingEstimator : 745/1225 [00:02<00:01, 338.41it/s]
62%|██████▏ | Scoring GeneralizingEstimator : 757/1225 [00:02<00:01, 339.28it/s]
63%|██████▎ | Scoring GeneralizingEstimator : 769/1225 [00:02<00:01, 339.95it/s]
64%|██████▎ | Scoring GeneralizingEstimator : 780/1225 [00:02<00:01, 339.24it/s]
65%|██████▍ | Scoring GeneralizingEstimator : 792/1225 [00:02<00:01, 340.11it/s]
66%|██████▌ | Scoring GeneralizingEstimator : 804/1225 [00:02<00:01, 340.92it/s]
67%|██████▋ | Scoring GeneralizingEstimator : 816/1225 [00:02<00:01, 341.48it/s]
68%|██████▊ | Scoring GeneralizingEstimator : 828/1225 [00:02<00:01, 341.81it/s]
69%|██████▊ | Scoring GeneralizingEstimator : 840/1225 [00:02<00:01, 341.67it/s]
69%|██████▉ | Scoring GeneralizingEstimator : 851/1225 [00:02<00:01, 340.84it/s]
70%|███████ | Scoring GeneralizingEstimator : 863/1225 [00:02<00:01, 341.01it/s]
71%|███████▏ | Scoring GeneralizingEstimator : 875/1225 [00:02<00:01, 341.20it/s]
72%|███████▏ | Scoring GeneralizingEstimator : 887/1225 [00:02<00:00, 341.89it/s]
73%|███████▎ | Scoring GeneralizingEstimator : 899/1225 [00:02<00:00, 342.02it/s]
74%|███████▍ | Scoring GeneralizingEstimator : 910/1225 [00:02<00:00, 341.05it/s]
75%|███████▌ | Scoring GeneralizingEstimator : 922/1225 [00:02<00:00, 341.28it/s]
76%|███████▋ | Scoring GeneralizingEstimator : 935/1225 [00:02<00:00, 342.76it/s]
77%|███████▋ | Scoring GeneralizingEstimator : 946/1225 [00:02<00:00, 341.80it/s]
78%|███████▊ | Scoring GeneralizingEstimator : 958/1225 [00:02<00:00, 342.38it/s]
79%|███████▉ | Scoring GeneralizingEstimator : 970/1225 [00:02<00:00, 342.77it/s]
80%|████████ | Scoring GeneralizingEstimator : 981/1225 [00:02<00:00, 341.89it/s]
81%|████████ | Scoring GeneralizingEstimator : 993/1225 [00:02<00:00, 342.01it/s]
82%|████████▏ | Scoring GeneralizingEstimator : 1005/1225 [00:02<00:00, 342.32it/s]
83%|████████▎ | Scoring GeneralizingEstimator : 1017/1225 [00:02<00:00, 343.03it/s]
84%|████████▍ | Scoring GeneralizingEstimator : 1029/1225 [00:03<00:00, 342.02it/s]
85%|████████▍ | Scoring GeneralizingEstimator : 1041/1225 [00:03<00:00, 342.64it/s]
86%|████████▌ | Scoring GeneralizingEstimator : 1053/1225 [00:03<00:00, 342.90it/s]
87%|████████▋ | Scoring GeneralizingEstimator : 1065/1225 [00:03<00:00, 343.22it/s]
88%|████████▊ | Scoring GeneralizingEstimator : 1077/1225 [00:03<00:00, 343.26it/s]
89%|████████▉ | Scoring GeneralizingEstimator : 1088/1225 [00:03<00:00, 341.98it/s]
90%|████████▉ | Scoring GeneralizingEstimator : 1100/1225 [00:03<00:00, 342.64it/s]
91%|█████████ | Scoring GeneralizingEstimator : 1111/1225 [00:03<00:00, 341.67it/s]
92%|█████████▏| Scoring GeneralizingEstimator : 1123/1225 [00:03<00:00, 341.72it/s]
93%|█████████▎| Scoring GeneralizingEstimator : 1135/1225 [00:03<00:00, 341.82it/s]
94%|█████████▎| Scoring GeneralizingEstimator : 1147/1225 [00:03<00:00, 342.10it/s]
95%|█████████▍| Scoring GeneralizingEstimator : 1159/1225 [00:03<00:00, 342.35it/s]
96%|█████████▌| Scoring GeneralizingEstimator : 1172/1225 [00:03<00:00, 342.50it/s]
97%|█████████▋| Scoring GeneralizingEstimator : 1183/1225 [00:03<00:00, 341.54it/s]
98%|█████████▊| Scoring GeneralizingEstimator : 1195/1225 [00:03<00:00, 342.19it/s]
98%|█████████▊| Scoring GeneralizingEstimator : 1206/1225 [00:03<00:00, 341.32it/s]
99%|█████████▉| Scoring GeneralizingEstimator : 1218/1225 [00:03<00:00, 342.08it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00, 342.59it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00, 339.91it/s]
Plot
fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
scores,
vmin=0,
vmax=1.0,
cmap="RdBu_r",
origin="lower",
extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()

References#
Total running time of the script: (0 minutes 5.967 seconds)