Decoding sensor space data with generalization across time and conditions#

This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.

# Authors: Jean-Remi King <jeanremi.king@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
import matplotlib.pyplot as plt

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator

print(__doc__)

# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / 'MEG' / 'sample'
raw_fname = meg_path / 'sample_audvis_filt-0-40_raw.fif'
events_fname = meg_path / 'sample_audvis_filt-0-40_raw-eve.fif'
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude='bads')  # Pick MEG channels
raw.filter(1., 30., fir_design='firwin')  # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {'Auditory/Left': 1, 'Auditory/Right': 2,
            'Visual/Left': 3, 'Visual/Right': 4}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(raw, events, event_id=event_id, tmin=tmin, tmax=tmax,
                    proj=True, picks=picks, baseline=None, preload=True,
                    reject=dict(mag=5e-12), decim=decim, verbose='error')
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 sec)

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   4 out of   4 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done 366 out of 366 | elapsed:    0.6s finished

We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.

clf = make_pipeline(
    StandardScaler(),
    LogisticRegression(solver='liblinear')  # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring='roc_auc', n_jobs=None,
                                 verbose=True)

# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs['Left'].get_data(),
             y=epochs['Left'].events[:, 2] > 2)
  0%|          | Fitting GeneralizingEstimator : 0/35 [00:00<?,       ?it/s]
  3%|2         | Fitting GeneralizingEstimator : 1/35 [00:00<00:01,   29.01it/s]
 11%|#1        | Fitting GeneralizingEstimator : 4/35 [00:00<00:00,   59.19it/s]
 17%|#7        | Fitting GeneralizingEstimator : 6/35 [00:00<00:00,   59.22it/s]
 23%|##2       | Fitting GeneralizingEstimator : 8/35 [00:00<00:00,   59.20it/s]
 31%|###1      | Fitting GeneralizingEstimator : 11/35 [00:00<00:00,   65.70it/s]
 40%|####      | Fitting GeneralizingEstimator : 14/35 [00:00<00:00,   70.04it/s]
 49%|####8     | Fitting GeneralizingEstimator : 17/35 [00:00<00:00,   73.15it/s]
 57%|#####7    | Fitting GeneralizingEstimator : 20/35 [00:00<00:00,   75.49it/s]
 66%|######5   | Fitting GeneralizingEstimator : 23/35 [00:00<00:00,   77.30it/s]
 71%|#######1  | Fitting GeneralizingEstimator : 25/35 [00:00<00:00,   75.04it/s]
 80%|########  | Fitting GeneralizingEstimator : 28/35 [00:00<00:00,   76.64it/s]
 86%|########5 | Fitting GeneralizingEstimator : 30/35 [00:00<00:00,   74.74it/s]
 94%|#########4| Fitting GeneralizingEstimator : 33/35 [00:00<00:00,   76.17it/s]
100%|##########| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   76.74it/s]
100%|##########| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   75.39it/s]

Score on the epochs where the stimulus was presented to the right.

scores = time_gen.score(X=epochs['Right'].get_data(),
                        y=epochs['Right'].events[:, 2] > 2)
  0%|          | Scoring GeneralizingEstimator : 0/1225 [00:00<?,       ?it/s]
  1%|1         | Scoring GeneralizingEstimator : 13/1225 [00:00<00:03,  379.13it/s]
  3%|2         | Scoring GeneralizingEstimator : 32/1225 [00:00<00:02,  470.70it/s]
  4%|4         | Scoring GeneralizingEstimator : 51/1225 [00:00<00:02,  502.56it/s]
  5%|5         | Scoring GeneralizingEstimator : 66/1225 [00:00<00:02,  486.29it/s]
  7%|6         | Scoring GeneralizingEstimator : 80/1225 [00:00<00:02,  470.08it/s]
  8%|8         | Scoring GeneralizingEstimator : 98/1225 [00:00<00:02,  481.43it/s]
 10%|9         | Scoring GeneralizingEstimator : 117/1225 [00:00<00:02,  494.66it/s]
 11%|#1        | Scoring GeneralizingEstimator : 135/1225 [00:00<00:02,  498.94it/s]
 13%|#2        | Scoring GeneralizingEstimator : 154/1225 [00:00<00:02,  507.37it/s]
 14%|#4        | Scoring GeneralizingEstimator : 173/1225 [00:00<00:02,  513.93it/s]
 16%|#5        | Scoring GeneralizingEstimator : 192/1225 [00:00<00:01,  519.31it/s]
 17%|#7        | Scoring GeneralizingEstimator : 211/1225 [00:00<00:01,  523.96it/s]
 19%|#8        | Scoring GeneralizingEstimator : 231/1225 [00:00<00:01,  530.27it/s]
 20%|##        | Scoring GeneralizingEstimator : 249/1225 [00:00<00:01,  530.20it/s]
 22%|##1       | Scoring GeneralizingEstimator : 268/1225 [00:00<00:01,  533.08it/s]
 24%|##3       | Scoring GeneralizingEstimator : 288/1225 [00:00<00:01,  538.34it/s]
 25%|##5       | Scoring GeneralizingEstimator : 307/1225 [00:00<00:01,  539.68it/s]
 26%|##6       | Scoring GeneralizingEstimator : 323/1225 [00:00<00:01,  533.83it/s]
 28%|##7       | Scoring GeneralizingEstimator : 339/1225 [00:00<00:01,  528.74it/s]
 29%|##9       | Scoring GeneralizingEstimator : 358/1225 [00:00<00:01,  531.35it/s]
 31%|###       | Scoring GeneralizingEstimator : 378/1225 [00:00<00:01,  535.90it/s]
 32%|###2      | Scoring GeneralizingEstimator : 397/1225 [00:00<00:01,  537.76it/s]
 34%|###3      | Scoring GeneralizingEstimator : 412/1225 [00:00<00:01,  530.96it/s]
 35%|###4      | Scoring GeneralizingEstimator : 425/1225 [00:00<00:01,  520.65it/s]
 36%|###5      | Scoring GeneralizingEstimator : 438/1225 [00:00<00:01,  511.25it/s]
 37%|###7      | Scoring GeneralizingEstimator : 456/1225 [00:00<00:01,  512.61it/s]
 39%|###8      | Scoring GeneralizingEstimator : 475/1225 [00:00<00:01,  515.86it/s]
 40%|####      | Scoring GeneralizingEstimator : 493/1225 [00:00<00:01,  516.99it/s]
 42%|####1     | Scoring GeneralizingEstimator : 512/1225 [00:00<00:01,  519.85it/s]
 43%|####3     | Scoring GeneralizingEstimator : 531/1225 [00:01<00:01,  522.15it/s]
 45%|####4     | Scoring GeneralizingEstimator : 551/1225 [00:01<00:01,  526.39it/s]
 47%|####6     | Scoring GeneralizingEstimator : 570/1225 [00:01<00:01,  528.59it/s]
 48%|####7     | Scoring GeneralizingEstimator : 587/1225 [00:01<00:01,  527.10it/s]
 49%|####9     | Scoring GeneralizingEstimator : 604/1225 [00:01<00:01,  525.69it/s]
 51%|#####     | Scoring GeneralizingEstimator : 622/1225 [00:01<00:01,  526.00it/s]
 52%|#####2    | Scoring GeneralizingEstimator : 641/1225 [00:01<00:01,  527.89it/s]
 54%|#####3    | Scoring GeneralizingEstimator : 660/1225 [00:01<00:01,  529.87it/s]
 55%|#####5    | Scoring GeneralizingEstimator : 679/1225 [00:01<00:01,  531.40it/s]
 57%|#####6    | Scoring GeneralizingEstimator : 698/1225 [00:01<00:00,  533.02it/s]
 58%|#####8    | Scoring GeneralizingEstimator : 716/1225 [00:01<00:00,  532.91it/s]
 60%|######    | Scoring GeneralizingEstimator : 735/1225 [00:01<00:00,  534.59it/s]
 62%|######1   | Scoring GeneralizingEstimator : 754/1225 [00:01<00:00,  536.19it/s]
 63%|######3   | Scoring GeneralizingEstimator : 773/1225 [00:01<00:00,  537.67it/s]
 65%|######4   | Scoring GeneralizingEstimator : 791/1225 [00:01<00:00,  537.41it/s]
 66%|######6   | Scoring GeneralizingEstimator : 809/1225 [00:01<00:00,  536.89it/s]
 68%|######7   | Scoring GeneralizingEstimator : 827/1225 [00:01<00:00,  536.45it/s]
 69%|######8   | Scoring GeneralizingEstimator : 845/1225 [00:01<00:00,  536.12it/s]
 71%|#######   | Scoring GeneralizingEstimator : 864/1225 [00:01<00:00,  537.57it/s]
 72%|#######2  | Scoring GeneralizingEstimator : 882/1225 [00:01<00:00,  537.25it/s]
 74%|#######3  | Scoring GeneralizingEstimator : 901/1225 [00:01<00:00,  538.12it/s]
 75%|#######5  | Scoring GeneralizingEstimator : 921/1225 [00:01<00:00,  540.74it/s]
 77%|#######6  | Scoring GeneralizingEstimator : 941/1225 [00:01<00:00,  543.37it/s]
 78%|#######8  | Scoring GeneralizingEstimator : 960/1225 [00:01<00:00,  544.29it/s]
 80%|#######9  | Scoring GeneralizingEstimator : 978/1225 [00:01<00:00,  543.36it/s]
 81%|########1 | Scoring GeneralizingEstimator : 998/1225 [00:01<00:00,  545.79it/s]
 83%|########3 | Scoring GeneralizingEstimator : 1018/1225 [00:01<00:00,  547.95it/s]
 85%|########4 | Scoring GeneralizingEstimator : 1038/1225 [00:01<00:00,  549.85it/s]
 86%|########6 | Scoring GeneralizingEstimator : 1057/1225 [00:01<00:00,  550.32it/s]
 88%|########7 | Scoring GeneralizingEstimator : 1076/1225 [00:02<00:00,  550.83it/s]
 89%|########9 | Scoring GeneralizingEstimator : 1094/1225 [00:02<00:00,  549.67it/s]
 91%|######### | Scoring GeneralizingEstimator : 1113/1225 [00:02<00:00,  549.88it/s]
 92%|#########2| Scoring GeneralizingEstimator : 1132/1225 [00:02<00:00,  550.09it/s]
 94%|#########4| Scoring GeneralizingEstimator : 1152/1225 [00:02<00:00,  552.04it/s]
 96%|#########5| Scoring GeneralizingEstimator : 1171/1225 [00:02<00:00,  552.32it/s]
 97%|#########7| Scoring GeneralizingEstimator : 1191/1225 [00:02<00:00,  554.24it/s]
 99%|#########8| Scoring GeneralizingEstimator : 1210/1225 [00:02<00:00,  554.27it/s]
100%|##########| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00,  555.92it/s]
100%|##########| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00,  540.28it/s]

Plot

fig, ax = plt.subplots(1)
im = ax.matshow(scores, vmin=0, vmax=1., cmap='RdBu_r', origin='lower',
                extent=epochs.times[[0, -1, 0, -1]])
ax.axhline(0., color='k')
ax.axvline(0., color='k')
ax.xaxis.set_ticks_position('bottom')
ax.set_xlabel('Testing Time (s)')
ax.set_ylabel('Training Time (s)')
ax.set_title('Generalization across time and condition')
plt.colorbar(im, ax=ax)
plt.show()
Generalization across time and condition

References#

Total running time of the script: ( 0 minutes 7.364 seconds)

Estimated memory usage: 128 MB

Gallery generated by Sphinx-Gallery

On this page