Note
Go to the end to download the full example code.
Decoding sensor space data with generalization across time and conditions#
This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.
# Authors: Jean-Rémi King <jeanremi.king@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator
print(__doc__)
# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads") # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin") # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
"Auditory/Left": 1,
"Auditory/Right": 2,
"Visual/Left": 3,
"Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
raw,
events,
event_id=event_id,
tmin=tmin,
tmax=tmax,
proj=True,
picks=picks,
baseline=None,
preload=True,
reject=dict(mag=5e-12),
decim=decim,
verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Reading 0 ... 41699 = 0.000 ... 277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)
[Parallel(n_jobs=1)]: Done 17 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 71 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 161 tasks | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 287 tasks | elapsed: 0.5s
We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.
clf = make_pipeline(
StandardScaler(),
LogisticRegression(solver="liblinear"), # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)
# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
0%| | Fitting GeneralizingEstimator : 0/35 [00:00<?, ?it/s]
6%|▌ | Fitting GeneralizingEstimator : 2/35 [00:00<00:00, 54.49it/s]
11%|█▏ | Fitting GeneralizingEstimator : 4/35 [00:00<00:00, 52.72it/s]
14%|█▍ | Fitting GeneralizingEstimator : 5/35 [00:00<00:00, 44.28it/s]
20%|██ | Fitting GeneralizingEstimator : 7/35 [00:00<00:00, 48.06it/s]
23%|██▎ | Fitting GeneralizingEstimator : 8/35 [00:00<00:00, 44.24it/s]
26%|██▌ | Fitting GeneralizingEstimator : 9/35 [00:00<00:00, 41.39it/s]
29%|██▊ | Fitting GeneralizingEstimator : 10/35 [00:00<00:00, 39.54it/s]
37%|███▋ | Fitting GeneralizingEstimator : 13/35 [00:00<00:00, 46.63it/s]
46%|████▌ | Fitting GeneralizingEstimator : 16/35 [00:00<00:00, 52.10it/s]
51%|█████▏ | Fitting GeneralizingEstimator : 18/35 [00:00<00:00, 52.99it/s]
60%|██████ | Fitting GeneralizingEstimator : 21/35 [00:00<00:00, 57.04it/s]
69%|██████▊ | Fitting GeneralizingEstimator : 24/35 [00:00<00:00, 59.87it/s]
74%|███████▍ | Fitting GeneralizingEstimator : 26/35 [00:00<00:00, 59.83it/s]
80%|████████ | Fitting GeneralizingEstimator : 28/35 [00:00<00:00, 59.80it/s]
89%|████████▊ | Fitting GeneralizingEstimator : 31/35 [00:00<00:00, 62.46it/s]
97%|█████████▋| Fitting GeneralizingEstimator : 34/35 [00:00<00:00, 64.79it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00, 61.90it/s]
Score on the epochs where the stimulus was presented to the right.
scores = time_gen.score(
X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
0%| | Scoring GeneralizingEstimator : 0/1225 [00:00<?, ?it/s]
1%| | Scoring GeneralizingEstimator : 8/1225 [00:00<00:05, 232.84it/s]
2%|▏ | Scoring GeneralizingEstimator : 20/1225 [00:00<00:04, 290.03it/s]
3%|▎ | Scoring GeneralizingEstimator : 32/1225 [00:00<00:03, 312.94it/s]
4%|▎ | Scoring GeneralizingEstimator : 43/1225 [00:00<00:03, 316.21it/s]
4%|▍ | Scoring GeneralizingEstimator : 53/1225 [00:00<00:03, 310.21it/s]
5%|▌ | Scoring GeneralizingEstimator : 65/1225 [00:00<00:03, 313.86it/s]
6%|▌ | Scoring GeneralizingEstimator : 76/1225 [00:00<00:03, 315.82it/s]
7%|▋ | Scoring GeneralizingEstimator : 86/1225 [00:00<00:03, 312.96it/s]
8%|▊ | Scoring GeneralizingEstimator : 93/1225 [00:00<00:03, 291.85it/s]
9%|▊ | Scoring GeneralizingEstimator : 105/1225 [00:00<00:03, 299.52it/s]
10%|▉ | Scoring GeneralizingEstimator : 117/1225 [00:00<00:03, 305.83it/s]
11%|█ | Scoring GeneralizingEstimator : 129/1225 [00:00<00:03, 311.15it/s]
11%|█▏ | Scoring GeneralizingEstimator : 140/1225 [00:00<00:03, 312.73it/s]
12%|█▏ | Scoring GeneralizingEstimator : 152/1225 [00:00<00:03, 316.91it/s]
13%|█▎ | Scoring GeneralizingEstimator : 164/1225 [00:00<00:03, 320.43it/s]
14%|█▍ | Scoring GeneralizingEstimator : 177/1225 [00:00<00:03, 325.94it/s]
15%|█▌ | Scoring GeneralizingEstimator : 187/1225 [00:00<00:03, 323.23it/s]
16%|█▋ | Scoring GeneralizingEstimator : 200/1225 [00:00<00:03, 326.62it/s]
17%|█▋ | Scoring GeneralizingEstimator : 211/1225 [00:00<00:03, 326.49it/s]
18%|█▊ | Scoring GeneralizingEstimator : 223/1225 [00:00<00:03, 328.65it/s]
19%|█▉ | Scoring GeneralizingEstimator : 237/1225 [00:00<00:02, 334.99it/s]
20%|██ | Scoring GeneralizingEstimator : 250/1225 [00:00<00:02, 338.52it/s]
21%|██▏ | Scoring GeneralizingEstimator : 263/1225 [00:00<00:02, 341.90it/s]
22%|██▏ | Scoring GeneralizingEstimator : 274/1225 [00:00<00:02, 340.81it/s]
23%|██▎ | Scoring GeneralizingEstimator : 287/1225 [00:00<00:02, 343.91it/s]
24%|██▍ | Scoring GeneralizingEstimator : 300/1225 [00:00<00:02, 346.72it/s]
25%|██▌ | Scoring GeneralizingEstimator : 312/1225 [00:00<00:02, 346.52it/s]
26%|██▋ | Scoring GeneralizingEstimator : 322/1225 [00:00<00:02, 340.98it/s]
27%|██▋ | Scoring GeneralizingEstimator : 328/1225 [00:00<00:02, 330.03it/s]
27%|██▋ | Scoring GeneralizingEstimator : 335/1225 [00:01<00:02, 320.89it/s]
28%|██▊ | Scoring GeneralizingEstimator : 342/1225 [00:01<00:02, 311.95it/s]
28%|██▊ | Scoring GeneralizingEstimator : 348/1225 [00:01<00:02, 302.31it/s]
29%|██▉ | Scoring GeneralizingEstimator : 356/1225 [00:01<00:02, 298.44it/s]
30%|██▉ | Scoring GeneralizingEstimator : 365/1225 [00:01<00:02, 294.77it/s]
31%|███ | Scoring GeneralizingEstimator : 376/1225 [00:01<00:02, 295.43it/s]
32%|███▏ | Scoring GeneralizingEstimator : 387/1225 [00:01<00:02, 297.23it/s]
33%|███▎ | Scoring GeneralizingEstimator : 401/1225 [00:01<00:02, 303.82it/s]
34%|███▍ | Scoring GeneralizingEstimator : 414/1225 [00:01<00:02, 303.97it/s]
34%|███▍ | Scoring GeneralizingEstimator : 419/1225 [00:01<00:02, 295.37it/s]
35%|███▍ | Scoring GeneralizingEstimator : 425/1225 [00:01<00:02, 287.71it/s]
35%|███▌ | Scoring GeneralizingEstimator : 432/1225 [00:01<00:02, 283.38it/s]
36%|███▌ | Scoring GeneralizingEstimator : 438/1225 [00:01<00:02, 277.63it/s]
36%|███▋ | Scoring GeneralizingEstimator : 446/1225 [00:01<00:02, 275.48it/s]
37%|███▋ | Scoring GeneralizingEstimator : 454/1225 [00:01<00:02, 269.03it/s]
38%|███▊ | Scoring GeneralizingEstimator : 464/1225 [00:01<00:02, 269.97it/s]
39%|███▊ | Scoring GeneralizingEstimator : 474/1225 [00:01<00:02, 271.40it/s]
40%|███▉ | Scoring GeneralizingEstimator : 484/1225 [00:01<00:02, 272.73it/s]
40%|████ | Scoring GeneralizingEstimator : 496/1225 [00:01<00:02, 277.10it/s]
42%|████▏ | Scoring GeneralizingEstimator : 509/1225 [00:01<00:02, 282.81it/s]
43%|████▎ | Scoring GeneralizingEstimator : 521/1225 [00:01<00:02, 286.63it/s]
43%|████▎ | Scoring GeneralizingEstimator : 532/1225 [00:01<00:02, 288.70it/s]
44%|████▍ | Scoring GeneralizingEstimator : 544/1225 [00:01<00:02, 292.22it/s]
45%|████▌ | Scoring GeneralizingEstimator : 557/1225 [00:01<00:02, 297.11it/s]
47%|████▋ | Scoring GeneralizingEstimator : 570/1225 [00:01<00:02, 301.69it/s]
48%|████▊ | Scoring GeneralizingEstimator : 583/1225 [00:01<00:02, 306.02it/s]
49%|████▊ | Scoring GeneralizingEstimator : 596/1225 [00:01<00:02, 310.12it/s]
50%|████▉ | Scoring GeneralizingEstimator : 609/1225 [00:01<00:01, 314.01it/s]
51%|█████ | Scoring GeneralizingEstimator : 623/1225 [00:02<00:01, 319.08it/s]
52%|█████▏ | Scoring GeneralizingEstimator : 636/1225 [00:02<00:01, 322.52it/s]
53%|█████▎ | Scoring GeneralizingEstimator : 648/1225 [00:02<00:01, 324.25it/s]
54%|█████▍ | Scoring GeneralizingEstimator : 661/1225 [00:02<00:01, 327.22it/s]
55%|█████▍ | Scoring GeneralizingEstimator : 673/1225 [00:02<00:01, 328.73it/s]
56%|█████▌ | Scoring GeneralizingEstimator : 685/1225 [00:02<00:01, 330.08it/s]
57%|█████▋ | Scoring GeneralizingEstimator : 696/1225 [00:02<00:01, 329.88it/s]
58%|█████▊ | Scoring GeneralizingEstimator : 707/1225 [00:02<00:01, 329.69it/s]
59%|█████▉ | Scoring GeneralizingEstimator : 720/1225 [00:02<00:01, 332.48it/s]
60%|█████▉ | Scoring GeneralizingEstimator : 733/1225 [00:02<00:01, 335.23it/s]
61%|██████ | Scoring GeneralizingEstimator : 745/1225 [00:02<00:01, 336.30it/s]
62%|██████▏ | Scoring GeneralizingEstimator : 756/1225 [00:02<00:01, 335.80it/s]
63%|██████▎ | Scoring GeneralizingEstimator : 767/1225 [00:02<00:01, 335.32it/s]
64%|██████▎ | Scoring GeneralizingEstimator : 780/1225 [00:02<00:01, 337.91it/s]
65%|██████▍ | Scoring GeneralizingEstimator : 792/1225 [00:02<00:01, 338.85it/s]
66%|██████▌ | Scoring GeneralizingEstimator : 805/1225 [00:02<00:01, 340.04it/s]
67%|██████▋ | Scoring GeneralizingEstimator : 815/1225 [00:02<00:01, 337.90it/s]
68%|██████▊ | Scoring GeneralizingEstimator : 829/1225 [00:02<00:01, 341.79it/s]
69%|██████▉ | Scoring GeneralizingEstimator : 843/1225 [00:02<00:01, 345.39it/s]
70%|██████▉ | Scoring GeneralizingEstimator : 855/1225 [00:02<00:01, 345.76it/s]
71%|███████ | Scoring GeneralizingEstimator : 867/1225 [00:02<00:01, 346.23it/s]
72%|███████▏ | Scoring GeneralizingEstimator : 880/1225 [00:02<00:00, 348.26it/s]
73%|███████▎ | Scoring GeneralizingEstimator : 892/1225 [00:02<00:00, 348.52it/s]
74%|███████▍ | Scoring GeneralizingEstimator : 904/1225 [00:02<00:00, 347.61it/s]
75%|███████▍ | Scoring GeneralizingEstimator : 915/1225 [00:02<00:00, 346.54it/s]
76%|███████▌ | Scoring GeneralizingEstimator : 928/1225 [00:02<00:00, 348.37it/s]
77%|███████▋ | Scoring GeneralizingEstimator : 941/1225 [00:02<00:00, 350.27it/s]
78%|███████▊ | Scoring GeneralizingEstimator : 952/1225 [00:02<00:00, 349.06it/s]
79%|███████▊ | Scoring GeneralizingEstimator : 963/1225 [00:02<00:00, 347.95it/s]
80%|███████▉ | Scoring GeneralizingEstimator : 977/1225 [00:02<00:00, 351.35it/s]
81%|████████ | Scoring GeneralizingEstimator : 990/1225 [00:03<00:00, 353.07it/s]
82%|████████▏ | Scoring GeneralizingEstimator : 1002/1225 [00:03<00:00, 353.23it/s]
83%|████████▎ | Scoring GeneralizingEstimator : 1015/1225 [00:03<00:00, 354.89it/s]
84%|████████▍ | Scoring GeneralizingEstimator : 1028/1225 [00:03<00:00, 356.04it/s]
85%|████████▍ | Scoring GeneralizingEstimator : 1040/1225 [00:03<00:00, 356.01it/s]
86%|████████▌ | Scoring GeneralizingEstimator : 1050/1225 [00:03<00:00, 353.02it/s]
87%|████████▋ | Scoring GeneralizingEstimator : 1062/1225 [00:03<00:00, 352.74it/s]
88%|████████▊ | Scoring GeneralizingEstimator : 1075/1225 [00:03<00:00, 354.38it/s]
89%|████████▉ | Scoring GeneralizingEstimator : 1088/1225 [00:03<00:00, 355.96it/s]
90%|████████▉ | Scoring GeneralizingEstimator : 1099/1225 [00:03<00:00, 354.27it/s]
91%|█████████ | Scoring GeneralizingEstimator : 1112/1225 [00:03<00:00, 354.31it/s]
92%|█████████▏| Scoring GeneralizingEstimator : 1124/1225 [00:03<00:00, 354.41it/s]
93%|█████████▎| Scoring GeneralizingEstimator : 1137/1225 [00:03<00:00, 355.98it/s]
94%|█████████▍| Scoring GeneralizingEstimator : 1150/1225 [00:03<00:00, 357.44it/s]
95%|█████████▍| Scoring GeneralizingEstimator : 1162/1225 [00:03<00:00, 357.39it/s]
96%|█████████▌| Scoring GeneralizingEstimator : 1175/1225 [00:03<00:00, 358.68it/s]
97%|█████████▋| Scoring GeneralizingEstimator : 1187/1225 [00:03<00:00, 358.56it/s]
98%|█████████▊| Scoring GeneralizingEstimator : 1200/1225 [00:03<00:00, 359.87it/s]
99%|█████████▉| Scoring GeneralizingEstimator : 1211/1225 [00:03<00:00, 358.21it/s]
100%|█████████▉| Scoring GeneralizingEstimator : 1222/1225 [00:03<00:00, 356.61it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00, 332.54it/s]
Plot
fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
scores,
vmin=0,
vmax=1.0,
cmap="RdBu_r",
origin="lower",
extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
References#
Total running time of the script: (0 minutes 6.077 seconds)