XDAWN Decoding From EEG data#

ERP decoding with Xdawn [1][2]. For each event type, a set of spatial Xdawn filters are trained and applied on the signal. Channels are concatenated and rescaled to create features vectors that will be fed into a logistic regression.

# Authors: Alexandre Barachant <alexandre.barachant@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.model_selection import StratifiedKFold
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import MinMaxScaler

from mne import Epochs, EvokedArray, create_info, io, pick_types, read_events
from mne.datasets import sample
from mne.decoding import Vectorizer
from mne.preprocessing import Xdawn

print(__doc__)

data_path = sample.data_path()

Set parameters and read data

meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
event_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
tmin, tmax = -0.1, 0.3
event_id = {
    "Auditory/Left": 1,
    "Auditory/Right": 2,
    "Visual/Left": 3,
    "Visual/Right": 4,
}
n_filter = 3

# Setup for reading the raw data
raw = io.read_raw_fif(raw_fname, preload=True)
raw.filter(1, 20, fir_design="firwin")
events = read_events(event_fname)

picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude="bads")

epochs = Epochs(
    raw,
    events,
    event_id,
    tmin,
    tmax,
    proj=False,
    picks=picks,
    baseline=None,
    preload=True,
    verbose=False,
)

# Create classification pipeline
clf = make_pipeline(
    Xdawn(n_components=n_filter),
    Vectorizer(),
    MinMaxScaler(),
    LogisticRegression(penalty="l1", solver="liblinear", multi_class="auto"),
)

# Get the labels
labels = epochs.events[:, -1]

# Cross validator
cv = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)

# Do cross-validation
preds = np.empty(len(labels))
for train, test in cv.split(epochs, labels):
    clf.fit(epochs[train], labels[train])
    preds[test] = clf.predict(epochs[test])

# Classification report
target_names = ["aud_l", "aud_r", "vis_l", "vis_r"]
report = classification_report(labels, preds, target_names=target_names)
print(report)

# Normalized confusion matrix
cm = confusion_matrix(labels, preds)
cm_normalized = cm.astype(float) / cm.sum(axis=1)[:, np.newaxis]

# Plot confusion matrix
fig, ax = plt.subplots(1, layout="constrained")
im = ax.imshow(cm_normalized, interpolation="nearest", cmap=plt.cm.Blues)
ax.set(title="Normalized Confusion matrix")
fig.colorbar(im)
tick_marks = np.arange(len(target_names))
plt.xticks(tick_marks, target_names, rotation=45)
plt.yticks(tick_marks, target_names)
ax.set(ylabel="True label", xlabel="Predicted label")
Normalized Confusion matrix
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 20 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 20.00 Hz
- Upper transition bandwidth: 5.00 Hz (-6 dB cutoff frequency: 22.50 Hz)
- Filter length: 497 samples (3.310 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    0.3s
[Parallel(n_jobs=1)]: Done 287 tasks      | elapsed:    0.5s
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
Estimating covariance using EMPIRICAL
Done.
              precision    recall  f1-score   support

       aud_l       0.81      0.69      0.75        72
       aud_r       0.72      0.82      0.77        73
       vis_l       0.99      0.97      0.98        73
       vis_r       0.96      0.97      0.96        70

    accuracy                           0.86       288
   macro avg       0.87      0.87      0.86       288
weighted avg       0.87      0.86      0.86       288

The patterns_ attribute of a fitted Xdawn instance (here from the last cross-validation fold) can be used for visualization.

fig, axes = plt.subplots(
    nrows=len(event_id),
    ncols=n_filter,
    figsize=(n_filter, len(event_id) * 2),
    layout="constrained",
)
fitted_xdawn = clf.steps[0][1]
info = create_info(epochs.ch_names, 1, epochs.get_channel_types())
info.set_montage(epochs.get_montage())
for ii, cur_class in enumerate(sorted(event_id)):
    cur_patterns = fitted_xdawn.patterns_[cur_class]
    pattern_evoked = EvokedArray(cur_patterns[:n_filter].T, info, tmin=0)
    pattern_evoked.plot_topomap(
        times=np.arange(n_filter),
        time_format="Component %d" if ii == 0 else "",
        colorbar=False,
        show_names=False,
        axes=axes[ii],
        show=False,
    )
    axes[ii, 0].set(ylabel=cur_class)
Component 0, Component 1, Component 2

References#

Total running time of the script: (0 minutes 7.936 seconds)

Estimated memory usage: 129 MB

Gallery generated by Sphinx-Gallery