Decoding sensor space data with generalization across time and conditions#

This example runs the analysis described in 1. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.

# Authors: Jean-Remi King <jeanremi.king@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
import matplotlib.pyplot as plt

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator

print(__doc__)

# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / 'MEG' / 'sample'
raw_fname = meg_path / 'sample_audvis_filt-0-40_raw.fif'
events_fname = meg_path / 'sample_audvis_filt-0-40_raw-eve.fif'
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude='bads')  # Pick MEG channels
raw.filter(1., 30., fir_design='firwin')  # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {'Auditory/Left': 1, 'Auditory/Right': 2,
            'Visual/Left': 3, 'Visual/Right': 4}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(raw, events, event_id=event_id, tmin=tmin, tmax=tmax,
                    proj=True, picks=picks, baseline=None, preload=True,
                    reject=dict(mag=5e-12), decim=decim, verbose='error')
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 sec)

We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.

clf = make_pipeline(
    StandardScaler(),
    LogisticRegression(solver='liblinear')  # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring='roc_auc', n_jobs=1,
                                 verbose=True)

# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs['Left'].get_data(),
             y=epochs['Left'].events[:, 2] > 2)
  0%|          | Fitting GeneralizingEstimator : 0/35 [00:00<?,       ?it/s]
  6%|5         | Fitting GeneralizingEstimator : 2/35 [00:00<00:00,   58.14it/s]
 11%|#1        | Fitting GeneralizingEstimator : 4/35 [00:00<00:00,   58.64it/s]
 17%|#7        | Fitting GeneralizingEstimator : 6/35 [00:00<00:00,   58.84it/s]
 26%|##5       | Fitting GeneralizingEstimator : 9/35 [00:00<00:00,   66.88it/s]
 34%|###4      | Fitting GeneralizingEstimator : 12/35 [00:00<00:00,   71.68it/s]
 43%|####2     | Fitting GeneralizingEstimator : 15/35 [00:00<00:00,   74.87it/s]
 51%|#####1    | Fitting GeneralizingEstimator : 18/35 [00:00<00:00,   77.16it/s]
 60%|######    | Fitting GeneralizingEstimator : 21/35 [00:00<00:00,   78.89it/s]
 69%|######8   | Fitting GeneralizingEstimator : 24/35 [00:00<00:00,   80.23it/s]
 74%|#######4  | Fitting GeneralizingEstimator : 26/35 [00:00<00:00,   77.61it/s]
 83%|########2 | Fitting GeneralizingEstimator : 29/35 [00:00<00:00,   78.87it/s]
 89%|########8 | Fitting GeneralizingEstimator : 31/35 [00:00<00:00,   76.73it/s]
 97%|#########7| Fitting GeneralizingEstimator : 34/35 [00:00<00:00,   77.97it/s]
100%|##########| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   78.39it/s]

Score on the epochs where the stimulus was presented to the right.

scores = time_gen.score(X=epochs['Right'].get_data(),
                        y=epochs['Right'].events[:, 2] > 2)
  0%|          | Scoring GeneralizingEstimator : 0/1225 [00:00<?,       ?it/s]
  1%|1         | Scoring GeneralizingEstimator : 15/1225 [00:00<00:02,  433.29it/s]
  3%|2         | Scoring GeneralizingEstimator : 34/1225 [00:00<00:02,  497.41it/s]
  4%|4         | Scoring GeneralizingEstimator : 54/1225 [00:00<00:02,  529.25it/s]
  6%|6         | Scoring GeneralizingEstimator : 74/1225 [00:00<00:02,  545.55it/s]
  8%|7         | Scoring GeneralizingEstimator : 94/1225 [00:00<00:02,  555.27it/s]
  9%|9         | Scoring GeneralizingEstimator : 115/1225 [00:00<00:01,  567.17it/s]
 11%|#1        | Scoring GeneralizingEstimator : 136/1225 [00:00<00:01,  575.82it/s]
 13%|#2        | Scoring GeneralizingEstimator : 157/1225 [00:00<00:01,  582.38it/s]
 14%|#4        | Scoring GeneralizingEstimator : 177/1225 [00:00<00:01,  583.47it/s]
 16%|#6        | Scoring GeneralizingEstimator : 198/1225 [00:00<00:01,  587.42it/s]
 18%|#7        | Scoring GeneralizingEstimator : 218/1225 [00:00<00:01,  587.80it/s]
 19%|#9        | Scoring GeneralizingEstimator : 237/1225 [00:00<00:01,  584.96it/s]
 21%|##        | Scoring GeneralizingEstimator : 256/1225 [00:00<00:01,  582.31it/s]
 23%|##2       | Scoring GeneralizingEstimator : 276/1225 [00:00<00:01,  583.18it/s]
 24%|##4       | Scoring GeneralizingEstimator : 294/1225 [00:00<00:01,  578.36it/s]
 26%|##5       | Scoring GeneralizingEstimator : 313/1225 [00:00<00:01,  576.44it/s]
 27%|##7       | Scoring GeneralizingEstimator : 331/1225 [00:00<00:01,  572.64it/s]
 29%|##8       | Scoring GeneralizingEstimator : 350/1225 [00:00<00:01,  571.80it/s]
 30%|###       | Scoring GeneralizingEstimator : 369/1225 [00:00<00:01,  570.98it/s]
 32%|###1      | Scoring GeneralizingEstimator : 387/1225 [00:00<00:01,  567.87it/s]
 33%|###3      | Scoring GeneralizingEstimator : 406/1225 [00:00<00:01,  567.39it/s]
 35%|###4      | Scoring GeneralizingEstimator : 425/1225 [00:00<00:01,  566.67it/s]
 36%|###6      | Scoring GeneralizingEstimator : 445/1225 [00:00<00:01,  568.49it/s]
 38%|###7      | Scoring GeneralizingEstimator : 464/1225 [00:00<00:01,  567.97it/s]
 39%|###9      | Scoring GeneralizingEstimator : 483/1225 [00:00<00:01,  567.32it/s]
 41%|####      | Scoring GeneralizingEstimator : 501/1225 [00:00<00:01,  564.66it/s]
 42%|####2     | Scoring GeneralizingEstimator : 520/1225 [00:00<00:01,  564.37it/s]
 44%|####4     | Scoring GeneralizingEstimator : 539/1225 [00:00<00:01,  563.91it/s]
 46%|####5     | Scoring GeneralizingEstimator : 560/1225 [00:00<00:01,  567.49it/s]
 47%|####7     | Scoring GeneralizingEstimator : 580/1225 [00:01<00:01,  568.94it/s]
 49%|####8     | Scoring GeneralizingEstimator : 600/1225 [00:01<00:01,  570.15it/s]
 51%|#####     | Scoring GeneralizingEstimator : 620/1225 [00:01<00:01,  571.10it/s]
 52%|#####2    | Scoring GeneralizingEstimator : 641/1225 [00:01<00:01,  573.78it/s]
 54%|#####3    | Scoring GeneralizingEstimator : 661/1225 [00:01<00:00,  574.88it/s]
 56%|#####5    | Scoring GeneralizingEstimator : 682/1225 [00:01<00:00,  577.64it/s]
 57%|#####7    | Scoring GeneralizingEstimator : 701/1225 [00:01<00:00,  576.72it/s]
 59%|#####8    | Scoring GeneralizingEstimator : 720/1225 [00:01<00:00,  575.59it/s]
 60%|######    | Scoring GeneralizingEstimator : 735/1225 [00:01<00:00,  567.73it/s]
 62%|######1   | Scoring GeneralizingEstimator : 754/1225 [00:01<00:00,  567.21it/s]
 63%|######3   | Scoring GeneralizingEstimator : 775/1225 [00:01<00:00,  570.32it/s]
 65%|######4   | Scoring GeneralizingEstimator : 795/1225 [00:01<00:00,  571.52it/s]
 67%|######6   | Scoring GeneralizingEstimator : 815/1225 [00:01<00:00,  572.63it/s]
 68%|######8   | Scoring GeneralizingEstimator : 834/1225 [00:01<00:00,  571.98it/s]
 70%|######9   | Scoring GeneralizingEstimator : 853/1225 [00:01<00:00,  571.14it/s]
 71%|#######1  | Scoring GeneralizingEstimator : 875/1225 [00:01<00:00,  575.58it/s]
 73%|#######3  | Scoring GeneralizingEstimator : 896/1225 [00:01<00:00,  577.94it/s]
 75%|#######4  | Scoring GeneralizingEstimator : 917/1225 [00:01<00:00,  580.25it/s]
 77%|#######6  | Scoring GeneralizingEstimator : 939/1225 [00:01<00:00,  584.01it/s]
 78%|#######8  | Scoring GeneralizingEstimator : 960/1225 [00:01<00:00,  585.97it/s]
 80%|########  | Scoring GeneralizingEstimator : 981/1225 [00:01<00:00,  587.88it/s]
 82%|########1 | Scoring GeneralizingEstimator : 1000/1225 [00:01<00:00,  586.52it/s]
 83%|########2 | Scoring GeneralizingEstimator : 1015/1225 [00:01<00:00,  578.90it/s]
 84%|########4 | Scoring GeneralizingEstimator : 1032/1225 [00:01<00:00,  574.85it/s]
 86%|########5 | Scoring GeneralizingEstimator : 1049/1225 [00:01<00:00,  570.97it/s]
 87%|########7 | Scoring GeneralizingEstimator : 1068/1225 [00:01<00:00,  570.38it/s]
 88%|########8 | Scoring GeneralizingEstimator : 1083/1225 [00:01<00:00,  563.62it/s]
 90%|########9 | Scoring GeneralizingEstimator : 1102/1225 [00:01<00:00,  563.45it/s]
 92%|#########1| Scoring GeneralizingEstimator : 1121/1225 [00:01<00:00,  563.30it/s]
 93%|#########2| Scoring GeneralizingEstimator : 1136/1225 [00:02<00:00,  556.35it/s]
 94%|#########4| Scoring GeneralizingEstimator : 1153/1225 [00:02<00:00,  553.28it/s]
 96%|#########5| Scoring GeneralizingEstimator : 1171/1225 [00:02<00:00,  552.20it/s]
 97%|#########7| Scoring GeneralizingEstimator : 1189/1225 [00:02<00:00,  550.84it/s]
 98%|#########8| Scoring GeneralizingEstimator : 1206/1225 [00:02<00:00,  548.30it/s]
100%|#########9| Scoring GeneralizingEstimator : 1221/1225 [00:02<00:00,  541.79it/s]
100%|##########| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00,  561.38it/s]

Plot

fig, ax = plt.subplots(1)
im = ax.matshow(scores, vmin=0, vmax=1., cmap='RdBu_r', origin='lower',
                extent=epochs.times[[0, -1, 0, -1]])
ax.axhline(0., color='k')
ax.axvline(0., color='k')
ax.xaxis.set_ticks_position('bottom')
ax.set_xlabel('Testing Time (s)')
ax.set_ylabel('Training Time (s)')
ax.set_title('Generalization across time and condition')
plt.colorbar(im, ax=ax)
plt.show()
Generalization across time and condition

References#

1

Jean-Rémi King and Stanislas Dehaene. Characterizing the dynamics of mental representations: the temporal generalization method. Trends in Cognitive Sciences, 18(4):203–210, 2014. doi:10.1016/j.tics.2014.01.002.

Total running time of the script: ( 0 minutes 7.112 seconds)

Estimated memory usage: 129 MB

Gallery generated by Sphinx-Gallery