Compute event-matched spatial filter on epochs.
This version of EMS [1] operates on the entire time course. No time window needs to be specified. The result is a spatial filter at each time point and a corresponding time course. Intuitively, the result gives the similarity between the filter at each time point and the data vector (sensors) at that time point.
mne.Epochs
The epochs.
list
of str
| None
, default None
If a list of strings, strings must match the epochs.event_id’s key as well as the number of conditions supported by the objective_function. If None keys in epochs.event_id are used.
str
| list
| slice
| None
Channels to include. Slices and lists of integers will be interpreted as
channel indices. In lists, channel type strings (e.g., ['meg',
'eeg']
) will pick channels of those types, channel name strings (e.g.,
['MEG0111', 'MEG2623']
will pick the given channels. Can also be the
string values “all” to pick all channels, or “data” to pick data
channels. None (default) will pick good data channels. Note that channels
in info['bads']
will be included if their names or indices are
explicitly provided.
int
| None
The number of jobs to run in parallel. If -1
, it is set
to the number of CPU cores. Requires the joblib
package.
None
(default) is a marker for ‘unset’ that will be interpreted
as n_jobs=1
(sequential execution) unless the call is performed under
a joblib.parallel_backend()
context manager that sets another
value for n_jobs
.
str
| None
, default LeaveOneOut
The cross-validation scheme.
str
| int
| None
Control verbosity of the logging output. If None
, use the default
verbosity level. See the logging documentation and
mne.verbose()
for details. Should only be passed as a keyword
argument.
References
mne.decoding.compute_ems
#Compute effect-matched-spatial filtering (EMS)