Create a spherical model for forward solution calculation.
str
Head center to use (in head coordinates). If ‘auto’, the head center will be calculated from the digitization points in info.
float
| str
| None
If float, compute spherical shells for EEG using the given radius. If ‘auto’, estimate an appropriate radius from the dig points in Info, If None, exclude shells (single layer sphere model).
mne.Info
| None
The mne.Info
object with information about the sensors and methods of measurement. Only needed if r0
or head_radius
are 'auto'
.
Relative radii for the spherical shells.
Sigma values for the spherical shells.
str
| int
| None
Control verbosity of the logging output. If None
, use the default
verbosity level. See the logging documentation and
mne.verbose()
for details. Should only be passed as a keyword
argument.
ConductorModel
The resulting spherical conductor model.
See also
Notes
The default model has:
relative_radii = (0.90, 0.92, 0.97, 1.0)
sigmas = (0.33, 1.0, 0.004, 0.33)
These correspond to compartments (with relative radii in m
and
conductivities σ in S/m
) for the brain, CSF, skull, and scalp,
respectively.
New in version 0.9.0.
mne.make_sphere_model
#Source alignment and coordinate frames
Brainstorm Elekta phantom dataset tutorial
Brainstorm CTF phantom dataset tutorial
4D Neuroimaging/BTi phantom dataset tutorial
Plot sensor denoising using oversampled temporal projection
Plotting sensor layouts of EEG systems