mne.channels.make_standard_montage#
- mne.channels.make_standard_montage(kind, head_size='auto')[source]#
Read a generic (built-in) standard montage that ships with MNE-Python.
- Parameters:
- kind
str
The name of the montage to use.
Note
You can retrieve the names of all built-in montages via
mne.channels.get_builtin_montages()
.- head_size
float
|None
|str
The head size (radius, in meters) to use for spherical montages. Can be None to not scale the read sizes.
'auto'
(default) will use 95mm for all montages except the'standard*'
,'mgh*'
, and'artinis*'
, which are already in fsaverage’s MRI coordinates (same as MNI).
- kind
- Returns:
- montageinstance of
DigMontage
The montage.
- montageinstance of
Notes
Individualized (digitized) electrode positions should be read in using
read_dig_captrak()
,read_dig_dat()
,read_dig_egi()
,read_dig_fif()
,read_dig_polhemus_isotrak()
,read_dig_hpts()
, or manually made withmake_dig_montage()
.New in v0.19.0.
Examples using mne.channels.make_standard_montage
#

Motor imagery decoding from EEG data using the Common Spatial Pattern (CSP)

Frequency-tagging: Basic analysis of an SSVEP/vSSR dataset