mne.decoding.PSDEstimator#
- class mne.decoding.PSDEstimator(sfreq=6.283185307179586, fmin=0, fmax=inf, bandwidth=None, adaptive=False, low_bias=True, n_jobs=None, normalization='length', *, verbose=None)[source]#
Compute power spectral density (PSD) using a multi-taper method.
- Parameters:
- sfreq
float
The sampling frequency.
- fmin
float
The lower frequency of interest.
- fmax
float
The upper frequency of interest.
- bandwidth
float
The bandwidth of the multi taper windowing function in Hz.
- adaptivebool
Use adaptive weights to combine the tapered spectra into PSD (slow, use n_jobs >> 1 to speed up computation).
- low_biasbool
Only use tapers with more than 90% spectral concentration within bandwidth.
- n_jobs
int
Number of parallel jobs to use (only used if adaptive=True).
- normalization‘full’ | ‘length’
Normalization strategy. If “full”, the PSD will be normalized by the sampling rate as well as the length of the signal (as in Nitime). Default is
'length'
.- verbosebool |
str
|int
|None
Control verbosity of the logging output. If
None
, use the default verbosity level. See the logging documentation andmne.verbose()
for details. Should only be passed as a keyword argument.
- sfreq
Methods
fit
(epochs_data, y)Compute power spectral density (PSD) using a multi-taper method.
fit_transform
(X[, y])Fit to data, then transform it.
Get metadata routing of this object.
get_params
([deep])Get parameters for this estimator.
set_fit_request
(*[, epochs_data])Request metadata passed to the
fit
method.set_output
(*[, transform])Set output container.
set_params
(**params)Set the parameters of this estimator.
set_transform_request
(*[, epochs_data])Request metadata passed to the
transform
method.transform
(epochs_data)Compute power spectral density (PSD) using a multi-taper method.
See also
- fit(epochs_data, y)[source]#
Compute power spectral density (PSD) using a multi-taper method.
- Parameters:
- Returns:
- selfinstance of
PSDEstimator
The modified instance.
- selfinstance of
- fit_transform(X, y=None, **fit_params)[source]#
Fit to data, then transform it.
Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.
- Parameters:
- Xarray_like of shape (n_samples, n_features)
Input samples.
- yarray_like of shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
- **fit_params
dict
Additional fit parameters.
- Returns:
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routing
MetadataRequest
A
MetadataRequest
encapsulating routing information.
- routing
- set_fit_request(*, epochs_data: bool | None | str = '$UNCHANGED$') PSDEstimator [source]#
Request metadata passed to the
fit
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed tofit
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it tofit
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in v1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.
- set_output(*, transform=None)[source]#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of
transform
andfit_transform
.“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
New in v1.4: “polars” option was added.
- Returns:
- self
estimator
instance Estimator instance.
- self
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline
). The latter have parameters of the form<component>__<parameter>
so that it’s possible to update each component of a nested object.
- set_transform_request(*, epochs_data: bool | None | str = '$UNCHANGED$') PSDEstimator [source]#
Request metadata passed to the
transform
method.Note that this method is only relevant if
enable_metadata_routing=True
(seesklearn.set_config()
). Please see User Guide on how the routing mechanism works.The options for each parameter are:
True
: metadata is requested, and passed totransform
if provided. The request is ignored if metadata is not provided.False
: metadata is not requested and the meta-estimator will not pass it totransform
.None
: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str
: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED
) retains the existing request. This allows you to change the request for some parameters and not others.New in v1.3.
Note
This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a
Pipeline
. Otherwise it has no effect.