mne.decoding.Scaler#
- class mne.decoding.Scaler(info=None, scalings=None, with_mean=True, with_std=True)[source]#
Standardize channel data.
This class scales data for each channel. It differs from scikit-learn classes (e.g.,
sklearn.preprocessing.StandardScaler) in that it scales each channel by estimating μ and σ using data from all time points and epochs, as opposed to standardizing each feature (i.e., each time point for each channel) by estimating using μ and σ using data from all epochs.- Parameters:
- info
mne.Info|None The
mne.Infoobject with information about the sensors and methods of measurement. Only necessary ifscalingsis a dict or None.- scalings
dict,str, defaultNone Scaling method to be applied to data channel wise.
if scalings is None (default), scales mag by 1e15, grad by 1e13, and eeg by 1e6.
if scalings is
dict, keys are channel types and values are scale factors.if
scalings=='median',sklearn.preprocessing.RobustScaleris used (requires sklearn version 0.17+).if
scalings=='mean',sklearn.preprocessing.StandardScaleris used.
- with_meanbool, default
True If True, center the data using mean (or median) before scaling. Ignored for channel-type scaling.
- with_stdbool, default
True If True, scale the data to unit variance (
scalings='mean'), quantile range (scalings='median), or using channel type ifscalingsis a dict or None).
- info
Methods
fit(epochs_data[, y])Standardize data across channels.
fit_transform(epochs_data[, y])Fit to data, then transform it.
Get metadata routing of this object.
get_params([deep])Get parameters for this estimator.
inverse_transform(epochs_data)Invert standardization of data across channels.
set_fit_request(*[, epochs_data])Configure whether metadata should be requested to be passed to the
fitmethod.set_inverse_transform_request(*[, epochs_data])Configure whether metadata should be requested to be passed to the
inverse_transformmethod.set_output(*[, transform])Set output container.
set_params(**params)Set the parameters of this estimator.
set_transform_request(*[, epochs_data])Configure whether metadata should be requested to be passed to the
transformmethod.transform(epochs_data)Standardize data across channels.
- fit_transform(epochs_data, y=None)[source]#
Fit to data, then transform it.
Fits transformer to epochs_data and y and returns a transformed version of epochs_data.
- Parameters:
- Returns:
- X
array, shape (n_epochs, n_channels, n_times) The data concatenated over channels.
- X
Notes
This function makes a copy of the data before the operations and the memory usage may be large with big data.
- get_metadata_routing()[source]#
Get metadata routing of this object.
Please check User Guide on how the routing mechanism works.
- Returns:
- routing
MetadataRequest A
MetadataRequestencapsulating routing information.
- routing
- inverse_transform(epochs_data)[source]#
Invert standardization of data across channels.
- Parameters:
- epochs_dataarray, shape ([n_epochs, ]n_channels, n_times)
The data.
- Returns:
- X
array, shape (n_epochs, n_channels, n_times) The data concatenated over channels.
- X
Notes
This function makes a copy of the data before the operations and the memory usage may be large with big data.
- set_fit_request(*, epochs_data: bool | None | str = '$UNCHANGED$') Scaler[source]#
Configure whether metadata should be requested to be passed to the
fitmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed tofitif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it tofit.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.New in v1.3.
- set_inverse_transform_request(*, epochs_data: bool | None | str = '$UNCHANGED$') Scaler[source]#
Configure whether metadata should be requested to be passed to the
inverse_transformmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed toinverse_transformif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it toinverse_transform.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.New in v1.3.
- set_output(*, transform=None)[source]#
Set output container.
See Introducing the set_output API for an example on how to use the API.
- Parameters:
- transform{“default”, “pandas”, “polars”}, default=None
Configure output of
transformandfit_transform.“default”: Default output format of a transformer
“pandas”: DataFrame output
“polars”: Polars output
None: Transform configuration is unchanged
New in v1.4: “polars” option was added.
- Returns:
- self
estimatorinstance Estimator instance.
- self
- set_params(**params)[source]#
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as
Pipeline). The latter have parameters of the form<component>__<parameter>so that it’s possible to update each component of a nested object.
- set_transform_request(*, epochs_data: bool | None | str = '$UNCHANGED$') Scaler[source]#
Configure whether metadata should be requested to be passed to the
transformmethod.Note that this method is only relevant when this estimator is used as a sub-estimator within a meta-estimator and metadata routing is enabled with
enable_metadata_routing=True(seesklearn.set_config()). Please check the User Guide on how the routing mechanism works.The options for each parameter are:
True: metadata is requested, and passed totransformif provided. The request is ignored if metadata is not provided.False: metadata is not requested and the meta-estimator will not pass it totransform.None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.str: metadata should be passed to the meta-estimator with this given alias instead of the original name.
The default (
sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.New in v1.3.
- transform(epochs_data)[source]#
Standardize data across channels.
- Parameters:
- epochs_data
array, shape (n_epochs, n_channels[, n_times]) The data.
- epochs_data
- Returns:
- X
array, shape (n_epochs, n_channels, n_times) The data concatenated over channels.
- X
Notes
This function makes a copy of the data before the operations and the memory usage may be large with big data.