mne.decoding.get_spatial_filter_from_estimator#
- mne.decoding.get_spatial_filter_from_estimator(estimator, info, *, inverse_transform=False, step_name=None, get_coefs=('filters_', 'patterns_', 'evals_'), patterns_method=None, verbose=None)[source]#
Instantiate a
mne.decoding.SpatialFilterobject.Creates object from the fitted generalized eigendecomposition transformers or
mne.decoding.LinearModel. This object can be used to visualize spatial filters, patterns, and eigenvalues.- Parameters:
- estimatorinstance of
sklearn.base.BaseEstimator Sklearn-based estimator or meta-estimator from which to initialize spatial filter. Use
step_nameto select relevant transformer from the pipeline object (works with nested names using__syntax).- infoinstance of
mne.Info The measurement info object for plotting topomaps.
- inverse_transformbool
If True, returns filters and patterns after inverse transforming them with the transformer steps of the estimator. Defaults to False.
- step_name
str|None Name of the sklearn’s pipeline step to get the coefs from. If inverse_transform is True, the inverse transformations will be applied using transformers before this step. If None, the last step will be used. Defaults to None.
- get_coefs
tuple The names of the coefficient attributes to retrieve, can include
'filters_','patterns_'and'evals_'. If step is GEDTransformer, will use all. if step is LinearModel will only use'filters_'and'patterns_'. Defaults to ('filters_','patterns_','evals_').- patterns_method
str The method used to compute the patterns. Can be None,
'pinv'or'haufe'. It will be set automatically to'pinv'if step is GEDTransformer, or to'haufe'if step is LinearModel. Defaults to None.- verbosebool |
str|int|None Control verbosity of the logging output. If
None, use the default verbosity level. See the logging documentation andmne.verbose()for details. Should only be passed as a keyword argument.
- estimatorinstance of
- Returns:
- sp_filterinstance of
mne.decoding.SpatialFilter The spatial filter object.
- sp_filterinstance of
See also
Notes
New in v1.11.
Examples using mne.decoding.get_spatial_filter_from_estimator#
Motor imagery decoding from EEG data using the Common Spatial Pattern (CSP)
Linear classifier on sensor data with plot patterns and filters
Compute spatial filters with Spatio-Spectral Decomposition (SSD)