Compute induced power in the source space with dSPM#

Returns STC files ie source estimates of induced power for different bands in the source space. The inverse method is linear based on dSPM inverse operator.

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt

import mne
from mne import io
from mne.datasets import sample
from mne.minimum_norm import read_inverse_operator, source_band_induced_power

print(__doc__)

Set parameters

data_path = sample.data_path()
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_raw.fif"
fname_inv = meg_path / "sample_audvis-meg-oct-6-meg-inv.fif"
tmin, tmax, event_id = -0.2, 0.5, 1

# Setup for reading the raw data
raw = io.read_raw_fif(raw_fname)
events = mne.find_events(raw, stim_channel="STI 014")
inverse_operator = read_inverse_operator(fname_inv)

include = []
raw.info["bads"] += ["MEG 2443", "EEG 053"]  # bads + 2 more

# picks MEG gradiometers
picks = mne.pick_types(
    raw.info, meg=True, eeg=False, eog=True, stim=False, include=include, exclude="bads"
)

# Load condition 1
event_id = 1
events = events[:10]  # take 10 events to keep the computation time low
# Use linear detrend to reduce any edge artifacts
epochs = mne.Epochs(
    raw,
    events,
    event_id,
    tmin,
    tmax,
    picks=picks,
    baseline=(None, 0),
    reject=dict(grad=4000e-13, eog=150e-6),
    preload=True,
    detrend=1,
)

# Compute a source estimate per frequency band
bands = dict(alpha=[9, 11], beta=[18, 22])

stcs = source_band_induced_power(
    epochs, inverse_operator, bands, n_cycles=2, use_fft=False, n_jobs=None
)

for b, stc in stcs.items():
    stc.save("induced_power_%s" % b, overwrite=True)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif...
    Read a total of 3 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
    Range : 25800 ... 192599 =     42.956 ...   320.670 secs
Ready.
320 events found on stim channel STI 014
Event IDs: [ 1  2  3  4  5 32]
Reading inverse operator decomposition from /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif...
    Reading inverse operator info...
    [done]
    Reading inverse operator decomposition...
    [done]
    305 x 305 full covariance (kind = 1) found.
    Read a total of 4 projection items:
        PCA-v1 (1 x 102) active
        PCA-v2 (1 x 102) active
        PCA-v3 (1 x 102) active
        Average EEG reference (1 x 60) active
    Noise covariance matrix read.
    22494 x 22494 diagonal covariance (kind = 2) found.
    Source covariance matrix read.
    22494 x 22494 diagonal covariance (kind = 6) found.
    Orientation priors read.
    22494 x 22494 diagonal covariance (kind = 5) found.
    Depth priors read.
    Did not find the desired covariance matrix (kind = 3)
    Reading a source space...
    Computing patch statistics...
    Patch information added...
    Distance information added...
    [done]
    Reading a source space...
    Computing patch statistics...
    Patch information added...
    Distance information added...
    [done]
    2 source spaces read
    Read a total of 4 projection items:
        PCA-v1 (1 x 102) active
        PCA-v2 (1 x 102) active
        PCA-v3 (1 x 102) active
        Average EEG reference (1 x 60) active
    Source spaces transformed to the inverse solution coordinate frame
Not setting metadata
2 matching events found
Setting baseline interval to [-0.19979521315838786, 0.0] s
Applying baseline correction (mode: mean)
Created an SSP operator (subspace dimension = 3)
3 projection items activated
Loading data for 2 events and 421 original time points ...
0 bad epochs dropped
Preparing the inverse operator for use...
    Scaled noise and source covariance from nave = 1 to nave = 1
    Created the regularized inverter
    Created an SSP operator (subspace dimension = 3)
    Created the whitener using a noise covariance matrix with rank 302 (3 small eigenvalues omitted)
    Computing noise-normalization factors (dSPM)...
[done]
Picked 305 channels from the data
Computing inverse...
    Eigenleads need to be weighted ...
Reducing data rank 305 -> 302
Computing source power ...
[done]
[done]
Writing STC to disk...
[done]
Writing STC to disk...
[done]

plot mean power

plt.plot(stcs["alpha"].times, stcs["alpha"].data.mean(axis=0), label="Alpha")
plt.plot(stcs["beta"].times, stcs["beta"].data.mean(axis=0), label="Beta")
plt.xlabel("Time (ms)")
plt.ylabel("Power")
plt.legend()
plt.title("Mean source induced power")
plt.show()
Mean source induced power

Total running time of the script: (0 minutes 7.480 seconds)

Estimated memory usage: 587 MB

Gallery generated by Sphinx-Gallery