Note
Go to the end to download the full example code.
Decoding sensor space data with generalization across time and conditions#
This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.
# Authors: Jean-Rémi King <jeanremi.king@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator
print(__doc__)
# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads") # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin") # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
"Auditory/Left": 1,
"Auditory/Right": 2,
"Visual/Left": 3,
"Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
raw,
events,
event_id=event_id,
tmin=tmin,
tmax=tmax,
proj=True,
picks=picks,
baseline=None,
preload=True,
reject=dict(mag=5e-12),
decim=decim,
verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Reading 0 ... 41699 = 0.000 ... 277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)
[Parallel(n_jobs=1)]: Done 17 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 71 tasks | elapsed: 0.1s
[Parallel(n_jobs=1)]: Done 161 tasks | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 287 tasks | elapsed: 0.6s
We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.
clf = make_pipeline(
StandardScaler(),
LogisticRegression(solver="liblinear"), # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)
# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
0%| | Fitting GeneralizingEstimator : 0/35 [00:00<?, ?it/s]
6%|▌ | Fitting GeneralizingEstimator : 2/35 [00:00<00:00, 56.91it/s]
11%|█▏ | Fitting GeneralizingEstimator : 4/35 [00:00<00:00, 58.16it/s]
17%|█▋ | Fitting GeneralizingEstimator : 6/35 [00:00<00:00, 58.59it/s]
26%|██▌ | Fitting GeneralizingEstimator : 9/35 [00:00<00:00, 66.45it/s]
34%|███▍ | Fitting GeneralizingEstimator : 12/35 [00:00<00:00, 71.36it/s]
43%|████▎ | Fitting GeneralizingEstimator : 15/35 [00:00<00:00, 73.44it/s]
51%|█████▏ | Fitting GeneralizingEstimator : 18/35 [00:00<00:00, 75.99it/s]
60%|██████ | Fitting GeneralizingEstimator : 21/35 [00:00<00:00, 77.91it/s]
66%|██████▌ | Fitting GeneralizingEstimator : 23/35 [00:00<00:00, 75.44it/s]
74%|███████▍ | Fitting GeneralizingEstimator : 26/35 [00:00<00:00, 77.12it/s]
80%|████████ | Fitting GeneralizingEstimator : 28/35 [00:00<00:00, 75.09it/s]
89%|████████▊ | Fitting GeneralizingEstimator : 31/35 [00:00<00:00, 76.60it/s]
94%|█████████▍| Fitting GeneralizingEstimator : 33/35 [00:00<00:00, 74.85it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00, 76.43it/s]
Score on the epochs where the stimulus was presented to the right.
scores = time_gen.score(
X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
0%| | Scoring GeneralizingEstimator : 0/1225 [00:00<?, ?it/s]
1%| | Scoring GeneralizingEstimator : 9/1225 [00:00<00:04, 258.73it/s]
2%|▏ | Scoring GeneralizingEstimator : 19/1225 [00:00<00:04, 277.52it/s]
2%|▏ | Scoring GeneralizingEstimator : 30/1225 [00:00<00:04, 293.81it/s]
3%|▎ | Scoring GeneralizingEstimator : 40/1225 [00:00<00:04, 294.10it/s]
4%|▍ | Scoring GeneralizingEstimator : 50/1225 [00:00<00:03, 294.77it/s]
5%|▍ | Scoring GeneralizingEstimator : 60/1225 [00:00<00:03, 293.37it/s]
6%|▌ | Scoring GeneralizingEstimator : 70/1225 [00:00<00:03, 293.95it/s]
7%|▋ | Scoring GeneralizingEstimator : 80/1225 [00:00<00:03, 294.33it/s]
7%|▋ | Scoring GeneralizingEstimator : 90/1225 [00:00<00:03, 294.55it/s]
8%|▊ | Scoring GeneralizingEstimator : 101/1225 [00:00<00:03, 296.12it/s]
9%|▉ | Scoring GeneralizingEstimator : 111/1225 [00:00<00:03, 296.21it/s]
10%|▉ | Scoring GeneralizingEstimator : 121/1225 [00:00<00:03, 296.29it/s]
11%|█ | Scoring GeneralizingEstimator : 131/1225 [00:00<00:03, 296.21it/s]
12%|█▏ | Scoring GeneralizingEstimator : 141/1225 [00:00<00:03, 296.02it/s]
12%|█▏ | Scoring GeneralizingEstimator : 152/1225 [00:00<00:03, 298.46it/s]
13%|█▎ | Scoring GeneralizingEstimator : 162/1225 [00:00<00:03, 298.21it/s]
14%|█▍ | Scoring GeneralizingEstimator : 173/1225 [00:00<00:03, 299.08it/s]
15%|█▌ | Scoring GeneralizingEstimator : 184/1225 [00:00<00:03, 301.36it/s]
16%|█▌ | Scoring GeneralizingEstimator : 194/1225 [00:00<00:03, 301.01it/s]
17%|█▋ | Scoring GeneralizingEstimator : 204/1225 [00:00<00:03, 300.71it/s]
17%|█▋ | Scoring GeneralizingEstimator : 214/1225 [00:00<00:03, 300.43it/s]
18%|█▊ | Scoring GeneralizingEstimator : 223/1225 [00:00<00:03, 297.83it/s]
19%|█▉ | Scoring GeneralizingEstimator : 234/1225 [00:00<00:03, 299.63it/s]
20%|█▉ | Scoring GeneralizingEstimator : 244/1225 [00:00<00:03, 297.80it/s]
21%|██ | Scoring GeneralizingEstimator : 254/1225 [00:00<00:03, 297.74it/s]
22%|██▏ | Scoring GeneralizingEstimator : 264/1225 [00:00<00:03, 297.64it/s]
22%|██▏ | Scoring GeneralizingEstimator : 274/1225 [00:00<00:03, 297.56it/s]
23%|██▎ | Scoring GeneralizingEstimator : 284/1225 [00:00<00:03, 297.47it/s]
24%|██▍ | Scoring GeneralizingEstimator : 294/1225 [00:00<00:03, 297.40it/s]
25%|██▍ | Scoring GeneralizingEstimator : 305/1225 [00:01<00:03, 299.13it/s]
26%|██▌ | Scoring GeneralizingEstimator : 315/1225 [00:01<00:03, 298.82it/s]
27%|██▋ | Scoring GeneralizingEstimator : 326/1225 [00:01<00:03, 299.58it/s]
28%|██▊ | Scoring GeneralizingEstimator : 337/1225 [00:01<00:02, 301.23it/s]
28%|██▊ | Scoring GeneralizingEstimator : 348/1225 [00:01<00:02, 302.75it/s]
29%|██▉ | Scoring GeneralizingEstimator : 359/1225 [00:01<00:02, 304.17it/s]
30%|███ | Scoring GeneralizingEstimator : 370/1225 [00:01<00:02, 305.50it/s]
31%|███ | Scoring GeneralizingEstimator : 381/1225 [00:01<00:02, 305.90it/s]
32%|███▏ | Scoring GeneralizingEstimator : 392/1225 [00:01<00:02, 307.07it/s]
33%|███▎ | Scoring GeneralizingEstimator : 403/1225 [00:01<00:02, 307.94it/s]
34%|███▎ | Scoring GeneralizingEstimator : 413/1225 [00:01<00:02, 307.30it/s]
35%|███▍ | Scoring GeneralizingEstimator : 424/1225 [00:01<00:02, 308.32it/s]
36%|███▌ | Scoring GeneralizingEstimator : 435/1225 [00:01<00:02, 309.22it/s]
36%|███▋ | Scoring GeneralizingEstimator : 446/1225 [00:01<00:02, 309.05it/s]
37%|███▋ | Scoring GeneralizingEstimator : 456/1225 [00:01<00:02, 308.35it/s]
38%|███▊ | Scoring GeneralizingEstimator : 467/1225 [00:01<00:02, 309.35it/s]
39%|███▉ | Scoring GeneralizingEstimator : 477/1225 [00:01<00:02, 308.65it/s]
40%|███▉ | Scoring GeneralizingEstimator : 488/1225 [00:01<00:02, 309.64it/s]
41%|████ | Scoring GeneralizingEstimator : 499/1225 [00:01<00:02, 310.29it/s]
42%|████▏ | Scoring GeneralizingEstimator : 509/1225 [00:01<00:02, 309.56it/s]
43%|████▎ | Scoring GeneralizingEstimator : 521/1225 [00:01<00:02, 310.84it/s]
43%|████▎ | Scoring GeneralizingEstimator : 532/1225 [00:01<00:02, 311.56it/s]
44%|████▍ | Scoring GeneralizingEstimator : 542/1225 [00:01<00:02, 310.77it/s]
45%|████▌ | Scoring GeneralizingEstimator : 553/1225 [00:01<00:02, 311.57it/s]
46%|████▌ | Scoring GeneralizingEstimator : 564/1225 [00:01<00:02, 312.34it/s]
47%|████▋ | Scoring GeneralizingEstimator : 575/1225 [00:01<00:02, 313.08it/s]
48%|████▊ | Scoring GeneralizingEstimator : 585/1225 [00:01<00:02, 311.80it/s]
49%|████▊ | Scoring GeneralizingEstimator : 595/1225 [00:01<00:02, 310.85it/s]
49%|████▉ | Scoring GeneralizingEstimator : 605/1225 [00:01<00:01, 310.06it/s]
50%|█████ | Scoring GeneralizingEstimator : 616/1225 [00:02<00:01, 310.28it/s]
51%|█████ | Scoring GeneralizingEstimator : 626/1225 [00:02<00:01, 309.57it/s]
52%|█████▏ | Scoring GeneralizingEstimator : 637/1225 [00:02<00:01, 310.22it/s]
53%|█████▎ | Scoring GeneralizingEstimator : 647/1225 [00:02<00:01, 309.45it/s]
54%|█████▎ | Scoring GeneralizingEstimator : 656/1225 [00:02<00:01, 307.24it/s]
54%|█████▍ | Scoring GeneralizingEstimator : 666/1225 [00:02<00:01, 306.68it/s]
55%|█████▌ | Scoring GeneralizingEstimator : 676/1225 [00:02<00:01, 306.18it/s]
56%|█████▌ | Scoring GeneralizingEstimator : 687/1225 [00:02<00:01, 306.19it/s]
57%|█████▋ | Scoring GeneralizingEstimator : 697/1225 [00:02<00:01, 305.68it/s]
58%|█████▊ | Scoring GeneralizingEstimator : 706/1225 [00:02<00:01, 303.72it/s]
58%|█████▊ | Scoring GeneralizingEstimator : 716/1225 [00:02<00:01, 303.36it/s]
59%|█████▉ | Scoring GeneralizingEstimator : 726/1225 [00:02<00:01, 303.04it/s]
60%|██████ | Scoring GeneralizingEstimator : 736/1225 [00:02<00:01, 302.54it/s]
61%|██████ | Scoring GeneralizingEstimator : 746/1225 [00:02<00:01, 302.23it/s]
62%|██████▏ | Scoring GeneralizingEstimator : 757/1225 [00:02<00:01, 302.33it/s]
63%|██████▎ | Scoring GeneralizingEstimator : 767/1225 [00:02<00:01, 301.94it/s]
63%|██████▎ | Scoring GeneralizingEstimator : 777/1225 [00:02<00:01, 301.65it/s]
64%|██████▍ | Scoring GeneralizingEstimator : 788/1225 [00:02<00:01, 302.91it/s]
65%|██████▌ | Scoring GeneralizingEstimator : 799/1225 [00:02<00:01, 304.07it/s]
66%|██████▌ | Scoring GeneralizingEstimator : 809/1225 [00:02<00:01, 303.64it/s]
67%|██████▋ | Scoring GeneralizingEstimator : 820/1225 [00:02<00:01, 304.68it/s]
68%|██████▊ | Scoring GeneralizingEstimator : 830/1225 [00:02<00:01, 304.28it/s]
69%|██████▊ | Scoring GeneralizingEstimator : 840/1225 [00:02<00:01, 303.10it/s]
69%|██████▉ | Scoring GeneralizingEstimator : 850/1225 [00:02<00:01, 302.76it/s]
70%|███████ | Scoring GeneralizingEstimator : 860/1225 [00:02<00:01, 302.45it/s]
71%|███████ | Scoring GeneralizingEstimator : 871/1225 [00:02<00:01, 303.65it/s]
72%|███████▏ | Scoring GeneralizingEstimator : 881/1225 [00:02<00:01, 303.28it/s]
73%|███████▎ | Scoring GeneralizingEstimator : 892/1225 [00:02<00:01, 304.44it/s]
74%|███████▎ | Scoring GeneralizingEstimator : 903/1225 [00:02<00:01, 305.54it/s]
75%|███████▍ | Scoring GeneralizingEstimator : 915/1225 [00:02<00:01, 307.17it/s]
76%|███████▌ | Scoring GeneralizingEstimator : 926/1225 [00:03<00:00, 307.91it/s]
76%|███████▋ | Scoring GeneralizingEstimator : 936/1225 [00:03<00:00, 307.36it/s]
77%|███████▋ | Scoring GeneralizingEstimator : 947/1225 [00:03<00:00, 308.34it/s]
78%|███████▊ | Scoring GeneralizingEstimator : 959/1225 [00:03<00:00, 310.58it/s]
79%|███████▉ | Scoring GeneralizingEstimator : 971/1225 [00:03<00:00, 312.85it/s]
80%|████████ | Scoring GeneralizingEstimator : 984/1225 [00:03<00:00, 316.35it/s]
81%|████████▏ | Scoring GeneralizingEstimator : 998/1225 [00:03<00:00, 320.33it/s]
82%|████████▏ | Scoring GeneralizingEstimator : 1002/1225 [00:03<00:00, 302.59it/s]
82%|████████▏ | Scoring GeneralizingEstimator : 1010/1225 [00:03<00:00, 299.31it/s]
84%|████████▎ | Scoring GeneralizingEstimator : 1023/1225 [00:03<00:00, 303.55it/s]
84%|████████▍ | Scoring GeneralizingEstimator : 1035/1225 [00:03<00:00, 306.13it/s]
85%|████████▌ | Scoring GeneralizingEstimator : 1047/1225 [00:03<00:00, 308.53it/s]
86%|████████▋ | Scoring GeneralizingEstimator : 1059/1225 [00:03<00:00, 310.69it/s]
87%|████████▋ | Scoring GeneralizingEstimator : 1070/1225 [00:03<00:00, 311.45it/s]
88%|████████▊ | Scoring GeneralizingEstimator : 1076/1225 [00:03<00:00, 304.84it/s]
88%|████████▊ | Scoring GeneralizingEstimator : 1082/1225 [00:03<00:00, 293.62it/s]
89%|████████▉ | Scoring GeneralizingEstimator : 1093/1225 [00:03<00:00, 295.09it/s]
90%|█████████ | Scoring GeneralizingEstimator : 1104/1225 [00:03<00:00, 296.60it/s]
91%|█████████ | Scoring GeneralizingEstimator : 1116/1225 [00:03<00:00, 299.49it/s]
92%|█████████▏| Scoring GeneralizingEstimator : 1127/1225 [00:03<00:00, 300.81it/s]
93%|█████████▎| Scoring GeneralizingEstimator : 1138/1225 [00:03<00:00, 302.03it/s]
94%|█████████▍| Scoring GeneralizingEstimator : 1150/1225 [00:03<00:00, 304.53it/s]
95%|█████████▍| Scoring GeneralizingEstimator : 1161/1225 [00:03<00:00, 305.49it/s]
96%|█████████▌| Scoring GeneralizingEstimator : 1172/1225 [00:03<00:00, 306.53it/s]
97%|█████████▋| Scoring GeneralizingEstimator : 1183/1225 [00:03<00:00, 307.51it/s]
97%|█████████▋| Scoring GeneralizingEstimator : 1194/1225 [00:03<00:00, 308.42it/s]
98%|█████████▊| Scoring GeneralizingEstimator : 1206/1225 [00:03<00:00, 310.58it/s]
99%|█████████▉| Scoring GeneralizingEstimator : 1217/1225 [00:03<00:00, 311.36it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:04<00:00, 312.78it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:04<00:00, 306.23it/s]
Plot
fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
scores,
vmin=0,
vmax=1.0,
cmap="RdBu_r",
origin="lower",
extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
References#
Total running time of the script: (0 minutes 6.386 seconds)