Decoding sensor space data with generalization across time and conditions#

This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.

# Authors: Jean-Remi King <jeanremi.king@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator

print(__doc__)

# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads")  # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin")  # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
    "Auditory/Left": 1,
    "Auditory/Right": 2,
    "Visual/Left": 3,
    "Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
    raw,
    events,
    event_id=event_id,
    tmin=tmin,
    tmax=tmax,
    proj=True,
    picks=picks,
    baseline=None,
    preload=True,
    reject=dict(mag=5e-12),
    decim=decim,
    verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    0.3s
[Parallel(n_jobs=1)]: Done 287 tasks      | elapsed:    0.4s

We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.

clf = make_pipeline(
    StandardScaler(),
    LogisticRegression(solver="liblinear"),  # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)

# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
  0%|          | Fitting GeneralizingEstimator : 0/35 [00:00<?,       ?it/s]
  3%|▎         | Fitting GeneralizingEstimator : 1/35 [00:00<00:01,   29.12it/s]
 11%|█▏        | Fitting GeneralizingEstimator : 4/35 [00:00<00:00,   59.02it/s]
 17%|█▋        | Fitting GeneralizingEstimator : 6/35 [00:00<00:00,   59.10it/s]
 23%|██▎       | Fitting GeneralizingEstimator : 8/35 [00:00<00:00,   59.15it/s]
 31%|███▏      | Fitting GeneralizingEstimator : 11/35 [00:00<00:00,   65.66it/s]
 40%|████      | Fitting GeneralizingEstimator : 14/35 [00:00<00:00,   69.88it/s]
 46%|████▌     | Fitting GeneralizingEstimator : 16/35 [00:00<00:00,   68.12it/s]
 54%|█████▍    | Fitting GeneralizingEstimator : 19/35 [00:00<00:00,   71.17it/s]
 60%|██████    | Fitting GeneralizingEstimator : 21/35 [00:00<00:00,   69.50it/s]
 69%|██████▊   | Fitting GeneralizingEstimator : 24/35 [00:00<00:00,   71.88it/s]
 74%|███████▍  | Fitting GeneralizingEstimator : 26/35 [00:00<00:00,   70.38it/s]
 80%|████████  | Fitting GeneralizingEstimator : 28/35 [00:00<00:00,   69.14it/s]
 89%|████████▊ | Fitting GeneralizingEstimator : 31/35 [00:00<00:00,   71.13it/s]
 97%|█████████▋| Fitting GeneralizingEstimator : 34/35 [00:00<00:00,   72.74it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   71.32it/s]

Score on the epochs where the stimulus was presented to the right.

scores = time_gen.score(
    X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
  0%|          | Scoring GeneralizingEstimator : 0/1225 [00:00<?,       ?it/s]
  1%|          | Scoring GeneralizingEstimator : 11/1225 [00:00<00:03,  321.55it/s]
  2%|▏         | Scoring GeneralizingEstimator : 26/1225 [00:00<00:03,  383.54it/s]
  3%|▎         | Scoring GeneralizingEstimator : 41/1225 [00:00<00:02,  403.75it/s]
  5%|▍         | Scoring GeneralizingEstimator : 56/1225 [00:00<00:02,  414.24it/s]
  6%|▌         | Scoring GeneralizingEstimator : 70/1225 [00:00<00:02,  414.05it/s]
  7%|▋         | Scoring GeneralizingEstimator : 85/1225 [00:00<00:02,  418.43it/s]
  8%|▊         | Scoring GeneralizingEstimator : 100/1225 [00:00<00:02,  421.92it/s]
  9%|▉         | Scoring GeneralizingEstimator : 114/1225 [00:00<00:02,  419.91it/s]
 11%|█         | Scoring GeneralizingEstimator : 130/1225 [00:00<00:02,  426.17it/s]
 12%|█▏        | Scoring GeneralizingEstimator : 145/1225 [00:00<00:02,  428.23it/s]
 13%|█▎        | Scoring GeneralizingEstimator : 161/1225 [00:00<00:02,  432.57it/s]
 14%|█▍        | Scoring GeneralizingEstimator : 176/1225 [00:00<00:02,  433.65it/s]
 16%|█▌        | Scoring GeneralizingEstimator : 191/1225 [00:00<00:02,  434.64it/s]
 17%|█▋        | Scoring GeneralizingEstimator : 206/1225 [00:00<00:02,  435.54it/s]
 18%|█▊        | Scoring GeneralizingEstimator : 221/1225 [00:00<00:02,  435.87it/s]
 19%|█▉        | Scoring GeneralizingEstimator : 235/1225 [00:00<00:02,  433.99it/s]
 20%|██        | Scoring GeneralizingEstimator : 249/1225 [00:00<00:02,  431.91it/s]
 21%|██▏       | Scoring GeneralizingEstimator : 262/1225 [00:00<00:02,  427.86it/s]
 22%|██▏       | Scoring GeneralizingEstimator : 275/1225 [00:00<00:02,  424.31it/s]
 24%|██▎       | Scoring GeneralizingEstimator : 288/1225 [00:00<00:02,  421.22it/s]
 24%|██▍       | Scoring GeneralizingEstimator : 300/1225 [00:00<00:02,  416.04it/s]
 26%|██▌       | Scoring GeneralizingEstimator : 313/1225 [00:00<00:02,  413.64it/s]
 27%|██▋       | Scoring GeneralizingEstimator : 327/1225 [00:00<00:02,  413.65it/s]
 28%|██▊       | Scoring GeneralizingEstimator : 338/1225 [00:00<00:02,  407.42it/s]
 29%|██▉       | Scoring GeneralizingEstimator : 353/1225 [00:00<00:02,  409.45it/s]
 30%|██▉       | Scoring GeneralizingEstimator : 366/1225 [00:00<00:02,  407.78it/s]
 31%|███       | Scoring GeneralizingEstimator : 378/1225 [00:00<00:02,  404.13it/s]
 32%|███▏      | Scoring GeneralizingEstimator : 388/1225 [00:00<00:02,  396.88it/s]
 33%|███▎      | Scoring GeneralizingEstimator : 400/1225 [00:00<00:02,  394.16it/s]
 34%|███▎      | Scoring GeneralizingEstimator : 413/1225 [00:01<00:02,  393.34it/s]
 35%|███▍      | Scoring GeneralizingEstimator : 428/1225 [00:01<00:02,  396.23it/s]
 36%|███▌      | Scoring GeneralizingEstimator : 441/1225 [00:01<00:01,  395.06it/s]
 37%|███▋      | Scoring GeneralizingEstimator : 451/1225 [00:01<00:01,  388.70it/s]
 38%|███▊      | Scoring GeneralizingEstimator : 462/1225 [00:01<00:01,  384.73it/s]
 39%|███▊      | Scoring GeneralizingEstimator : 472/1225 [00:01<00:01,  379.39it/s]
 39%|███▉      | Scoring GeneralizingEstimator : 481/1225 [00:01<00:01,  372.46it/s]
 40%|████      | Scoring GeneralizingEstimator : 491/1225 [00:01<00:01,  367.92it/s]
 41%|████      | Scoring GeneralizingEstimator : 502/1225 [00:01<00:01,  365.17it/s]
 42%|████▏     | Scoring GeneralizingEstimator : 514/1225 [00:01<00:01,  364.53it/s]
 43%|████▎     | Scoring GeneralizingEstimator : 524/1225 [00:01<00:01,  360.48it/s]
 44%|████▍     | Scoring GeneralizingEstimator : 539/1225 [00:01<00:01,  365.22it/s]
 45%|████▌     | Scoring GeneralizingEstimator : 552/1225 [00:01<00:01,  366.09it/s]
 46%|████▌     | Scoring GeneralizingEstimator : 566/1225 [00:01<00:01,  368.75it/s]
 47%|████▋     | Scoring GeneralizingEstimator : 579/1225 [00:01<00:01,  369.59it/s]
 48%|████▊     | Scoring GeneralizingEstimator : 592/1225 [00:01<00:01,  370.17it/s]
 49%|████▉     | Scoring GeneralizingEstimator : 604/1225 [00:01<00:01,  369.08it/s]
 50%|█████     | Scoring GeneralizingEstimator : 614/1225 [00:01<00:01,  365.07it/s]
 51%|█████     | Scoring GeneralizingEstimator : 627/1225 [00:01<00:01,  366.15it/s]
 52%|█████▏    | Scoring GeneralizingEstimator : 641/1225 [00:01<00:01,  368.73it/s]
 53%|█████▎    | Scoring GeneralizingEstimator : 652/1225 [00:01<00:01,  366.37it/s]
 54%|█████▍    | Scoring GeneralizingEstimator : 667/1225 [00:01<00:01,  370.56it/s]
 56%|█████▌    | Scoring GeneralizingEstimator : 682/1225 [00:01<00:01,  374.48it/s]
 57%|█████▋    | Scoring GeneralizingEstimator : 694/1225 [00:01<00:01,  373.46it/s]
 58%|█████▊    | Scoring GeneralizingEstimator : 707/1225 [00:01<00:01,  374.07it/s]
 59%|█████▉    | Scoring GeneralizingEstimator : 721/1225 [00:01<00:01,  376.16it/s]
 60%|█████▉    | Scoring GeneralizingEstimator : 731/1225 [00:01<00:01,  371.94it/s]
 61%|██████    | Scoring GeneralizingEstimator : 744/1225 [00:01<00:01,  372.52it/s]
 62%|██████▏   | Scoring GeneralizingEstimator : 759/1225 [00:01<00:01,  376.04it/s]
 63%|██████▎   | Scoring GeneralizingEstimator : 770/1225 [00:02<00:01,  373.40it/s]
 64%|██████▍   | Scoring GeneralizingEstimator : 783/1225 [00:02<00:01,  373.97it/s]
 65%|██████▌   | Scoring GeneralizingEstimator : 797/1225 [00:02<00:01,  376.09it/s]
 66%|██████▌   | Scoring GeneralizingEstimator : 808/1225 [00:02<00:01,  372.97it/s]
 67%|██████▋   | Scoring GeneralizingEstimator : 823/1225 [00:02<00:01,  376.58it/s]
 68%|██████▊   | Scoring GeneralizingEstimator : 837/1225 [00:02<00:01,  378.42it/s]
 69%|██████▉   | Scoring GeneralizingEstimator : 847/1225 [00:02<00:01,  374.11it/s]
 70%|██████▉   | Scoring GeneralizingEstimator : 856/1225 [00:02<00:01,  368.54it/s]
 71%|███████   | Scoring GeneralizingEstimator : 865/1225 [00:02<00:00,  363.26it/s]
 71%|███████   | Scoring GeneralizingEstimator : 872/1225 [00:02<00:00,  355.11it/s]
 72%|███████▏  | Scoring GeneralizingEstimator : 880/1225 [00:02<00:00,  348.99it/s]
 73%|███████▎  | Scoring GeneralizingEstimator : 889/1225 [00:02<00:00,  344.68it/s]
 74%|███████▎  | Scoring GeneralizingEstimator : 901/1225 [00:02<00:00,  344.81it/s]
 75%|███████▍  | Scoring GeneralizingEstimator : 915/1225 [00:02<00:00,  348.22it/s]
 76%|███████▌  | Scoring GeneralizingEstimator : 929/1225 [00:02<00:00,  351.38it/s]
 77%|███████▋  | Scoring GeneralizingEstimator : 939/1225 [00:02<00:00,  348.49it/s]
 78%|███████▊  | Scoring GeneralizingEstimator : 950/1225 [00:02<00:00,  347.34it/s]
 78%|███████▊  | Scoring GeneralizingEstimator : 961/1225 [00:02<00:00,  346.26it/s]
 79%|███████▉  | Scoring GeneralizingEstimator : 972/1225 [00:02<00:00,  344.90it/s]
 81%|████████  | Scoring GeneralizingEstimator : 987/1225 [00:02<00:00,  349.87it/s]
 82%|████████▏ | Scoring GeneralizingEstimator : 1002/1225 [00:02<00:00,  354.65it/s]
 83%|████████▎ | Scoring GeneralizingEstimator : 1014/1225 [00:02<00:00,  354.58it/s]
 84%|████████▍ | Scoring GeneralizingEstimator : 1026/1225 [00:02<00:00,  354.53it/s]
 85%|████████▍ | Scoring GeneralizingEstimator : 1040/1225 [00:02<00:00,  357.55it/s]
 86%|████████▌ | Scoring GeneralizingEstimator : 1052/1225 [00:02<00:00,  357.41it/s]
 87%|████████▋ | Scoring GeneralizingEstimator : 1063/1225 [00:02<00:00,  355.64it/s]
 88%|████████▊ | Scoring GeneralizingEstimator : 1076/1225 [00:02<00:00,  357.02it/s]
 89%|████████▊ | Scoring GeneralizingEstimator : 1087/1225 [00:02<00:00,  355.43it/s]
 90%|████████▉ | Scoring GeneralizingEstimator : 1098/1225 [00:02<00:00,  353.90it/s]
 91%|█████████ | Scoring GeneralizingEstimator : 1110/1225 [00:02<00:00,  353.94it/s]
 92%|█████████▏| Scoring GeneralizingEstimator : 1122/1225 [00:03<00:00,  353.59it/s]
 93%|█████████▎| Scoring GeneralizingEstimator : 1134/1225 [00:03<00:00,  353.60it/s]
 94%|█████████▎| Scoring GeneralizingEstimator : 1146/1225 [00:03<00:00,  353.59it/s]
 94%|█████████▍| Scoring GeneralizingEstimator : 1157/1225 [00:03<00:00,  352.18it/s]
 96%|█████████▌| Scoring GeneralizingEstimator : 1170/1225 [00:03<00:00,  353.75it/s]
 96%|█████████▋| Scoring GeneralizingEstimator : 1182/1225 [00:03<00:00,  353.74it/s]
 97%|█████████▋| Scoring GeneralizingEstimator : 1193/1225 [00:03<00:00,  352.21it/s]
 98%|█████████▊| Scoring GeneralizingEstimator : 1204/1225 [00:03<00:00,  350.84it/s]
 99%|█████████▉| Scoring GeneralizingEstimator : 1217/1225 [00:03<00:00,  352.14it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00,  349.12it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00,  368.37it/s]

Plot

fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
    scores,
    vmin=0,
    vmax=1.0,
    cmap="RdBu_r",
    origin="lower",
    extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
    'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
Generalization across time and condition

References#

Total running time of the script: (0 minutes 8.578 seconds)

Estimated memory usage: 153 MB

Gallery generated by Sphinx-Gallery