Note
Go to the end to download the full example code.
Decoding sensor space data with generalization across time and conditions#
This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.
# Authors: Jean-Rémi King <jeanremi.king@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator
print(__doc__)
# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads") # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin") # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
"Auditory/Left": 1,
"Auditory/Right": 2,
"Visual/Left": 3,
"Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
raw,
events,
event_id=event_id,
tmin=tmin,
tmax=tmax,
proj=True,
picks=picks,
baseline=None,
preload=True,
reject=dict(mag=5e-12),
decim=decim,
verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Reading 0 ... 41699 = 0.000 ... 277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)
[Parallel(n_jobs=1)]: Done 17 tasks | elapsed: 0.0s
[Parallel(n_jobs=1)]: Done 71 tasks | elapsed: 0.2s
[Parallel(n_jobs=1)]: Done 161 tasks | elapsed: 0.3s
[Parallel(n_jobs=1)]: Done 287 tasks | elapsed: 0.6s
We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.
clf = make_pipeline(
StandardScaler(),
LogisticRegression(solver="liblinear"), # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)
# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
0%| | Fitting GeneralizingEstimator : 0/35 [00:00<?, ?it/s]
6%|▌ | Fitting GeneralizingEstimator : 2/35 [00:00<00:00, 54.69it/s]
11%|█▏ | Fitting GeneralizingEstimator : 4/35 [00:00<00:00, 57.02it/s]
20%|██ | Fitting GeneralizingEstimator : 7/35 [00:00<00:00, 67.98it/s]
26%|██▌ | Fitting GeneralizingEstimator : 9/35 [00:00<00:00, 65.72it/s]
34%|███▍ | Fitting GeneralizingEstimator : 12/35 [00:00<00:00, 70.81it/s]
43%|████▎ | Fitting GeneralizingEstimator : 15/35 [00:00<00:00, 74.24it/s]
51%|█████▏ | Fitting GeneralizingEstimator : 18/35 [00:00<00:00, 76.69it/s]
60%|██████ | Fitting GeneralizingEstimator : 21/35 [00:00<00:00, 78.45it/s]
66%|██████▌ | Fitting GeneralizingEstimator : 23/35 [00:00<00:00, 75.91it/s]
74%|███████▍ | Fitting GeneralizingEstimator : 26/35 [00:00<00:00, 77.56it/s]
83%|████████▎ | Fitting GeneralizingEstimator : 29/35 [00:00<00:00, 78.88it/s]
86%|████████▌ | Fitting GeneralizingEstimator : 30/35 [00:00<00:00, 73.58it/s]
91%|█████████▏| Fitting GeneralizingEstimator : 32/35 [00:00<00:00, 71.26it/s]
97%|█████████▋| Fitting GeneralizingEstimator : 34/35 [00:00<00:00, 70.13it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00, 72.77it/s]
Score on the epochs where the stimulus was presented to the right.
scores = time_gen.score(
X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
0%| | Scoring GeneralizingEstimator : 0/1225 [00:00<?, ?it/s]
1%| | Scoring GeneralizingEstimator : 7/1225 [00:00<00:05, 203.89it/s]
2%|▏ | Scoring GeneralizingEstimator : 21/1225 [00:00<00:04, 299.29it/s]
3%|▎ | Scoring GeneralizingEstimator : 34/1225 [00:00<00:03, 328.97it/s]
4%|▍ | Scoring GeneralizingEstimator : 46/1225 [00:00<00:03, 336.23it/s]
5%|▍ | Scoring GeneralizingEstimator : 57/1225 [00:00<00:03, 334.13it/s]
6%|▌ | Scoring GeneralizingEstimator : 71/1225 [00:00<00:03, 348.68it/s]
7%|▋ | Scoring GeneralizingEstimator : 84/1225 [00:00<00:03, 354.84it/s]
8%|▊ | Scoring GeneralizingEstimator : 97/1225 [00:00<00:03, 359.40it/s]
9%|▉ | Scoring GeneralizingEstimator : 109/1225 [00:00<00:03, 359.02it/s]
10%|█ | Scoring GeneralizingEstimator : 123/1225 [00:00<00:03, 365.65it/s]
11%|█ | Scoring GeneralizingEstimator : 135/1225 [00:00<00:02, 364.63it/s]
12%|█▏ | Scoring GeneralizingEstimator : 146/1225 [00:00<00:02, 360.50it/s]
13%|█▎ | Scoring GeneralizingEstimator : 159/1225 [00:00<00:02, 359.92it/s]
14%|█▍ | Scoring GeneralizingEstimator : 172/1225 [00:00<00:02, 362.50it/s]
15%|█▌ | Scoring GeneralizingEstimator : 184/1225 [00:00<00:02, 361.91it/s]
16%|█▌ | Scoring GeneralizingEstimator : 196/1225 [00:00<00:02, 361.12it/s]
17%|█▋ | Scoring GeneralizingEstimator : 208/1225 [00:00<00:02, 360.68it/s]
18%|█▊ | Scoring GeneralizingEstimator : 222/1225 [00:00<00:02, 365.15it/s]
19%|█▉ | Scoring GeneralizingEstimator : 231/1225 [00:00<00:02, 355.11it/s]
20%|█▉ | Scoring GeneralizingEstimator : 241/1225 [00:00<00:02, 348.03it/s]
20%|██ | Scoring GeneralizingEstimator : 248/1225 [00:00<00:02, 335.41it/s]
21%|██ | Scoring GeneralizingEstimator : 254/1225 [00:00<00:02, 323.67it/s]
21%|██▏ | Scoring GeneralizingEstimator : 261/1225 [00:00<00:03, 315.45it/s]
22%|██▏ | Scoring GeneralizingEstimator : 272/1225 [00:00<00:03, 307.19it/s]
23%|██▎ | Scoring GeneralizingEstimator : 280/1225 [00:00<00:03, 302.01it/s]
24%|██▍ | Scoring GeneralizingEstimator : 293/1225 [00:00<00:03, 307.46it/s]
25%|██▍ | Scoring GeneralizingEstimator : 305/1225 [00:00<00:02, 310.58it/s]
26%|██▌ | Scoring GeneralizingEstimator : 317/1225 [00:00<00:02, 313.44it/s]
27%|██▋ | Scoring GeneralizingEstimator : 328/1225 [00:01<00:02, 313.19it/s]
27%|██▋ | Scoring GeneralizingEstimator : 336/1225 [00:01<00:02, 308.60it/s]
28%|██▊ | Scoring GeneralizingEstimator : 348/1225 [00:01<00:02, 311.45it/s]
29%|██▉ | Scoring GeneralizingEstimator : 361/1225 [00:01<00:02, 315.89it/s]
30%|███ | Scoring GeneralizingEstimator : 372/1225 [00:01<00:02, 313.93it/s]
31%|███▏ | Scoring GeneralizingEstimator : 385/1225 [00:01<00:02, 318.12it/s]
32%|███▏ | Scoring GeneralizingEstimator : 398/1225 [00:01<00:02, 321.90it/s]
33%|███▎ | Scoring GeneralizingEstimator : 405/1225 [00:01<00:02, 315.32it/s]
34%|███▍ | Scoring GeneralizingEstimator : 416/1225 [00:01<00:02, 315.93it/s]
35%|███▍ | Scoring GeneralizingEstimator : 428/1225 [00:01<00:02, 316.22it/s]
35%|███▌ | Scoring GeneralizingEstimator : 434/1225 [00:01<00:02, 308.44it/s]
36%|███▋ | Scoring GeneralizingEstimator : 445/1225 [00:01<00:02, 309.36it/s]
37%|███▋ | Scoring GeneralizingEstimator : 453/1225 [00:01<00:02, 305.02it/s]
37%|███▋ | Scoring GeneralizingEstimator : 457/1225 [00:01<00:02, 292.37it/s]
38%|███▊ | Scoring GeneralizingEstimator : 464/1225 [00:01<00:02, 287.72it/s]
38%|███▊ | Scoring GeneralizingEstimator : 470/1225 [00:01<00:02, 281.64it/s]
39%|███▉ | Scoring GeneralizingEstimator : 477/1225 [00:01<00:02, 275.42it/s]
40%|███▉ | Scoring GeneralizingEstimator : 484/1225 [00:01<00:02, 270.75it/s]
40%|████ | Scoring GeneralizingEstimator : 496/1225 [00:01<00:02, 275.02it/s]
42%|████▏ | Scoring GeneralizingEstimator : 510/1225 [00:01<00:02, 281.37it/s]
42%|████▏ | Scoring GeneralizingEstimator : 520/1225 [00:01<00:02, 281.72it/s]
43%|████▎ | Scoring GeneralizingEstimator : 526/1225 [00:01<00:02, 274.03it/s]
44%|████▎ | Scoring GeneralizingEstimator : 534/1225 [00:01<00:02, 272.07it/s]
45%|████▍ | Scoring GeneralizingEstimator : 546/1225 [00:01<00:02, 276.40it/s]
46%|████▌ | Scoring GeneralizingEstimator : 560/1225 [00:01<00:02, 283.46it/s]
47%|████▋ | Scoring GeneralizingEstimator : 573/1225 [00:01<00:02, 288.67it/s]
48%|████▊ | Scoring GeneralizingEstimator : 586/1225 [00:01<00:02, 293.64it/s]
49%|████▉ | Scoring GeneralizingEstimator : 598/1225 [00:01<00:02, 296.85it/s]
50%|████▉ | Scoring GeneralizingEstimator : 609/1225 [00:01<00:02, 298.20it/s]
51%|█████ | Scoring GeneralizingEstimator : 622/1225 [00:02<00:01, 302.58it/s]
52%|█████▏ | Scoring GeneralizingEstimator : 634/1225 [00:02<00:01, 305.21it/s]
53%|█████▎ | Scoring GeneralizingEstimator : 645/1225 [00:02<00:01, 306.31it/s]
54%|█████▎ | Scoring GeneralizingEstimator : 657/1225 [00:02<00:01, 308.84it/s]
55%|█████▍ | Scoring GeneralizingEstimator : 670/1225 [00:02<00:01, 312.77it/s]
56%|█████▌ | Scoring GeneralizingEstimator : 683/1225 [00:02<00:01, 316.34it/s]
57%|█████▋ | Scoring GeneralizingEstimator : 694/1225 [00:02<00:01, 316.87it/s]
58%|█████▊ | Scoring GeneralizingEstimator : 706/1225 [00:02<00:01, 318.79it/s]
59%|█████▊ | Scoring GeneralizingEstimator : 719/1225 [00:02<00:01, 321.80it/s]
60%|█████▉ | Scoring GeneralizingEstimator : 730/1225 [00:02<00:01, 322.07it/s]
61%|██████ | Scoring GeneralizingEstimator : 744/1225 [00:02<00:01, 325.42it/s]
62%|██████▏ | Scoring GeneralizingEstimator : 757/1225 [00:02<00:01, 328.50it/s]
63%|██████▎ | Scoring GeneralizingEstimator : 770/1225 [00:02<00:01, 331.41it/s]
64%|██████▍ | Scoring GeneralizingEstimator : 783/1225 [00:02<00:01, 334.00it/s]
65%|██████▍ | Scoring GeneralizingEstimator : 796/1225 [00:02<00:01, 336.61it/s]
66%|██████▌ | Scoring GeneralizingEstimator : 809/1225 [00:02<00:01, 339.13it/s]
67%|██████▋ | Scoring GeneralizingEstimator : 823/1225 [00:02<00:01, 342.91it/s]
68%|██████▊ | Scoring GeneralizingEstimator : 836/1225 [00:02<00:01, 344.99it/s]
69%|██████▉ | Scoring GeneralizingEstimator : 849/1225 [00:02<00:01, 347.04it/s]
70%|███████ | Scoring GeneralizingEstimator : 862/1225 [00:02<00:01, 348.99it/s]
72%|███████▏ | Scoring GeneralizingEstimator : 876/1225 [00:02<00:00, 352.18it/s]
73%|███████▎ | Scoring GeneralizingEstimator : 889/1225 [00:02<00:00, 353.89it/s]
74%|███████▎ | Scoring GeneralizingEstimator : 903/1225 [00:02<00:00, 356.70it/s]
75%|███████▍ | Scoring GeneralizingEstimator : 917/1225 [00:02<00:00, 359.68it/s]
76%|███████▌ | Scoring GeneralizingEstimator : 931/1225 [00:02<00:00, 362.51it/s]
77%|███████▋ | Scoring GeneralizingEstimator : 946/1225 [00:02<00:00, 365.55it/s]
78%|███████▊ | Scoring GeneralizingEstimator : 959/1225 [00:02<00:00, 366.60it/s]
79%|███████▉ | Scoring GeneralizingEstimator : 972/1225 [00:02<00:00, 367.52it/s]
80%|████████ | Scoring GeneralizingEstimator : 985/1225 [00:02<00:00, 368.50it/s]
82%|████████▏ | Scoring GeneralizingEstimator : 999/1225 [00:03<00:00, 370.67it/s]
83%|████████▎ | Scoring GeneralizingEstimator : 1012/1225 [00:03<00:00, 371.28it/s]
84%|████████▎ | Scoring GeneralizingEstimator : 1025/1225 [00:03<00:00, 372.02it/s]
85%|████████▍ | Scoring GeneralizingEstimator : 1039/1225 [00:03<00:00, 374.13it/s]
86%|████████▌ | Scoring GeneralizingEstimator : 1052/1225 [00:03<00:00, 374.76it/s]
87%|████████▋ | Scoring GeneralizingEstimator : 1066/1225 [00:03<00:00, 376.07it/s]
88%|████████▊ | Scoring GeneralizingEstimator : 1079/1225 [00:03<00:00, 376.61it/s]
89%|████████▉ | Scoring GeneralizingEstimator : 1092/1225 [00:03<00:00, 377.10it/s]
90%|█████████ | Scoring GeneralizingEstimator : 1105/1225 [00:03<00:00, 377.57it/s]
91%|█████████▏| Scoring GeneralizingEstimator : 1119/1225 [00:03<00:00, 379.42it/s]
92%|█████████▏| Scoring GeneralizingEstimator : 1132/1225 [00:03<00:00, 379.71it/s]
94%|█████████▎| Scoring GeneralizingEstimator : 1146/1225 [00:03<00:00, 381.01it/s]
95%|█████████▍| Scoring GeneralizingEstimator : 1159/1225 [00:03<00:00, 381.09it/s]
96%|█████████▌| Scoring GeneralizingEstimator : 1172/1225 [00:03<00:00, 381.36it/s]
97%|█████████▋| Scoring GeneralizingEstimator : 1185/1225 [00:03<00:00, 381.54it/s]
98%|█████████▊| Scoring GeneralizingEstimator : 1200/1225 [00:03<00:00, 383.02it/s]
99%|█████████▉| Scoring GeneralizingEstimator : 1214/1225 [00:03<00:00, 384.47it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00, 386.47it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00, 342.57it/s]
Plot
fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
scores,
vmin=0,
vmax=1.0,
cmap="RdBu_r",
origin="lower",
extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
References#
Total running time of the script: (0 minutes 6.034 seconds)