Decoding sensor space data with generalization across time and conditions#

This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.

# Authors: Jean-Remi King <jeanremi.king@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
import matplotlib.pyplot as plt

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator

print(__doc__)

# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / 'MEG' / 'sample'
raw_fname = meg_path / 'sample_audvis_filt-0-40_raw.fif'
events_fname = meg_path / 'sample_audvis_filt-0-40_raw-eve.fif'
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude='bads')  # Pick MEG channels
raw.filter(1., 30., fir_design='firwin')  # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {'Auditory/Left': 1, 'Auditory/Right': 2,
            'Visual/Left': 3, 'Visual/Right': 4}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(raw, events, event_id=event_id, tmin=tmin, tmax=tmax,
                    proj=True, picks=picks, baseline=None, preload=True,
                    reject=dict(mag=5e-12), decim=decim, verbose='error')
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)

[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   2 out of   2 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   3 out of   3 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done   4 out of   4 | elapsed:    0.0s remaining:    0.0s
[Parallel(n_jobs=1)]: Done 366 out of 366 | elapsed:    0.6s finished

We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.

clf = make_pipeline(
    StandardScaler(),
    LogisticRegression(solver='liblinear')  # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring='roc_auc', n_jobs=None,
                                 verbose=True)

# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs['Left'].get_data(),
             y=epochs['Left'].events[:, 2] > 2)
  0%|          | Fitting GeneralizingEstimator : 0/35 [00:00<?,       ?it/s]
  6%|5         | Fitting GeneralizingEstimator : 2/35 [00:00<00:00,   57.50it/s]
 11%|#1        | Fitting GeneralizingEstimator : 4/35 [00:00<00:00,   58.29it/s]
 17%|#7        | Fitting GeneralizingEstimator : 6/35 [00:00<00:00,   58.59it/s]
 23%|##2       | Fitting GeneralizingEstimator : 8/35 [00:00<00:00,   58.75it/s]
 34%|###4      | Fitting GeneralizingEstimator : 12/35 [00:00<00:00,   71.83it/s]
 43%|####2     | Fitting GeneralizingEstimator : 15/35 [00:00<00:00,   75.03it/s]
 49%|####8     | Fitting GeneralizingEstimator : 17/35 [00:00<00:00,   72.42it/s]
 57%|#####7    | Fitting GeneralizingEstimator : 20/35 [00:00<00:00,   74.84it/s]
 66%|######5   | Fitting GeneralizingEstimator : 23/35 [00:00<00:00,   76.66it/s]
 71%|#######1  | Fitting GeneralizingEstimator : 25/35 [00:00<00:00,   74.48it/s]
 80%|########  | Fitting GeneralizingEstimator : 28/35 [00:00<00:00,   76.09it/s]
 86%|########5 | Fitting GeneralizingEstimator : 30/35 [00:00<00:00,   74.24it/s]
 94%|#########4| Fitting GeneralizingEstimator : 33/35 [00:00<00:00,   75.73it/s]
100%|##########| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   75.82it/s]
100%|##########| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   74.89it/s]

Score on the epochs where the stimulus was presented to the right.

scores = time_gen.score(X=epochs['Right'].get_data(),
                        y=epochs['Right'].events[:, 2] > 2)
  0%|          | Scoring GeneralizingEstimator : 0/1225 [00:00<?,       ?it/s]
  0%|          | Scoring GeneralizingEstimator : 6/1225 [00:00<00:07,  173.39it/s]
  1%|1         | Scoring GeneralizingEstimator : 14/1225 [00:00<00:05,  204.20it/s]
  2%|1         | Scoring GeneralizingEstimator : 23/1225 [00:00<00:05,  224.26it/s]
  3%|2         | Scoring GeneralizingEstimator : 32/1225 [00:00<00:05,  235.25it/s]
  3%|3         | Scoring GeneralizingEstimator : 41/1225 [00:00<00:04,  242.00it/s]
  4%|4         | Scoring GeneralizingEstimator : 50/1225 [00:00<00:04,  246.08it/s]
  5%|4         | Scoring GeneralizingEstimator : 59/1225 [00:00<00:04,  249.31it/s]
  6%|5         | Scoring GeneralizingEstimator : 68/1225 [00:00<00:04,  251.39it/s]
  6%|6         | Scoring GeneralizingEstimator : 76/1225 [00:00<00:04,  248.95it/s]
  7%|6         | Scoring GeneralizingEstimator : 85/1225 [00:00<00:04,  250.98it/s]
  8%|7         | Scoring GeneralizingEstimator : 93/1225 [00:00<00:04,  249.22it/s]
  8%|8         | Scoring GeneralizingEstimator : 102/1225 [00:00<00:04,  250.44it/s]
  9%|9         | Scoring GeneralizingEstimator : 111/1225 [00:00<00:04,  252.08it/s]
 10%|9         | Scoring GeneralizingEstimator : 119/1225 [00:00<00:04,  250.42it/s]
 10%|#         | Scoring GeneralizingEstimator : 128/1225 [00:00<00:04,  251.53it/s]
 11%|#1        | Scoring GeneralizingEstimator : 138/1225 [00:00<00:04,  255.45it/s]
 12%|#2        | Scoring GeneralizingEstimator : 148/1225 [00:00<00:04,  258.82it/s]
 13%|#2        | Scoring GeneralizingEstimator : 159/1225 [00:00<00:04,  263.94it/s]
 14%|#3        | Scoring GeneralizingEstimator : 169/1225 [00:00<00:03,  266.39it/s]
 15%|#4        | Scoring GeneralizingEstimator : 178/1225 [00:00<00:03,  266.29it/s]
 15%|#5        | Scoring GeneralizingEstimator : 188/1225 [00:00<00:03,  268.45it/s]
 16%|#6        | Scoring GeneralizingEstimator : 198/1225 [00:00<00:03,  270.40it/s]
 17%|#7        | Scoring GeneralizingEstimator : 209/1225 [00:00<00:03,  274.07it/s]
 18%|#8        | Scoring GeneralizingEstimator : 222/1225 [00:00<00:03,  281.69it/s]
 19%|#9        | Scoring GeneralizingEstimator : 238/1225 [00:00<00:03,  294.71it/s]
 21%|##        | Scoring GeneralizingEstimator : 252/1225 [00:00<00:03,  302.70it/s]
 22%|##1       | Scoring GeneralizingEstimator : 267/1225 [00:00<00:03,  312.06it/s]
 23%|##3       | Scoring GeneralizingEstimator : 283/1225 [00:00<00:02,  322.53it/s]
 24%|##4       | Scoring GeneralizingEstimator : 298/1225 [00:00<00:02,  330.10it/s]
 26%|##5       | Scoring GeneralizingEstimator : 315/1225 [00:01<00:02,  341.02it/s]
 27%|##6       | Scoring GeneralizingEstimator : 330/1225 [00:01<00:02,  347.32it/s]
 28%|##8       | Scoring GeneralizingEstimator : 348/1225 [00:01<00:02,  358.78it/s]
 30%|##9       | Scoring GeneralizingEstimator : 365/1225 [00:01<00:02,  367.51it/s]
 31%|###1      | Scoring GeneralizingEstimator : 382/1225 [00:01<00:02,  375.59it/s]
 33%|###2      | Scoring GeneralizingEstimator : 400/1225 [00:01<00:02,  384.55it/s]
 34%|###4      | Scoring GeneralizingEstimator : 417/1225 [00:01<00:02,  391.36it/s]
 36%|###5      | Scoring GeneralizingEstimator : 435/1225 [00:01<00:01,  399.56it/s]
 37%|###7      | Scoring GeneralizingEstimator : 454/1225 [00:01<00:01,  408.76it/s]
 39%|###8      | Scoring GeneralizingEstimator : 472/1225 [00:01<00:01,  415.85it/s]
 40%|####      | Scoring GeneralizingEstimator : 490/1225 [00:01<00:01,  422.48it/s]
 42%|####1     | Scoring GeneralizingEstimator : 509/1225 [00:01<00:01,  430.43it/s]
 43%|####3     | Scoring GeneralizingEstimator : 527/1225 [00:01<00:01,  436.20it/s]
 45%|####4     | Scoring GeneralizingEstimator : 546/1225 [00:01<00:01,  443.28it/s]
 46%|####6     | Scoring GeneralizingEstimator : 565/1225 [00:01<00:01,  449.86it/s]
 48%|####7     | Scoring GeneralizingEstimator : 583/1225 [00:01<00:01,  454.44it/s]
 49%|####9     | Scoring GeneralizingEstimator : 601/1225 [00:01<00:01,  458.74it/s]
 51%|#####     | Scoring GeneralizingEstimator : 620/1225 [00:01<00:01,  464.41it/s]
 52%|#####2    | Scoring GeneralizingEstimator : 638/1225 [00:01<00:01,  468.13it/s]
 53%|#####3    | Scoring GeneralizingEstimator : 655/1225 [00:01<00:01,  469.91it/s]
 55%|#####4    | Scoring GeneralizingEstimator : 672/1225 [00:01<00:01,  471.68it/s]
 56%|#####6    | Scoring GeneralizingEstimator : 690/1225 [00:01<00:01,  474.91it/s]
 58%|#####7    | Scoring GeneralizingEstimator : 707/1225 [00:01<00:01,  476.31it/s]
 59%|#####8    | Scoring GeneralizingEstimator : 721/1225 [00:01<00:01,  473.06it/s]
 60%|######    | Scoring GeneralizingEstimator : 739/1225 [00:01<00:01,  475.83it/s]
 62%|######1   | Scoring GeneralizingEstimator : 754/1225 [00:01<00:00,  473.96it/s]
 63%|######2   | Scoring GeneralizingEstimator : 768/1225 [00:01<00:00,  470.79it/s]
 64%|######3   | Scoring GeneralizingEstimator : 781/1225 [00:01<00:00,  466.32it/s]
 65%|######4   | Scoring GeneralizingEstimator : 796/1225 [00:01<00:00,  465.07it/s]
 66%|######6   | Scoring GeneralizingEstimator : 814/1225 [00:02<00:00,  468.57it/s]
 68%|######8   | Scoring GeneralizingEstimator : 833/1225 [00:02<00:00,  473.51it/s]
 70%|######9   | Scoring GeneralizingEstimator : 852/1225 [00:02<00:00,  478.18it/s]
 71%|#######1  | Scoring GeneralizingEstimator : 870/1225 [00:02<00:00,  481.01it/s]
 73%|#######2  | Scoring GeneralizingEstimator : 889/1225 [00:02<00:00,  484.97it/s]
 74%|#######4  | Scoring GeneralizingEstimator : 907/1225 [00:02<00:00,  487.30it/s]
 76%|#######5  | Scoring GeneralizingEstimator : 926/1225 [00:02<00:00,  491.12it/s]
 77%|#######7  | Scoring GeneralizingEstimator : 944/1225 [00:02<00:00,  493.21it/s]
 79%|#######8  | Scoring GeneralizingEstimator : 962/1225 [00:02<00:00,  494.60it/s]
 80%|########  | Scoring GeneralizingEstimator : 980/1225 [00:02<00:00,  496.42it/s]
 82%|########1 | Scoring GeneralizingEstimator : 999/1225 [00:02<00:00,  499.72it/s]
 83%|########3 | Scoring GeneralizingEstimator : 1017/1225 [00:02<00:00,  500.98it/s]
 84%|########4 | Scoring GeneralizingEstimator : 1035/1225 [00:02<00:00,  502.21it/s]
 86%|########5 | Scoring GeneralizingEstimator : 1053/1225 [00:02<00:00,  503.32it/s]
 87%|########7 | Scoring GeneralizingEstimator : 1071/1225 [00:02<00:00,  504.70it/s]
 89%|########8 | Scoring GeneralizingEstimator : 1089/1225 [00:02<00:00,  506.19it/s]
 90%|######### | Scoring GeneralizingEstimator : 1107/1225 [00:02<00:00,  507.44it/s]
 92%|#########1| Scoring GeneralizingEstimator : 1124/1225 [00:02<00:00,  507.14it/s]
 93%|#########3| Scoring GeneralizingEstimator : 1142/1225 [00:02<00:00,  508.43it/s]
 95%|#########4| Scoring GeneralizingEstimator : 1158/1225 [00:02<00:00,  506.57it/s]
 96%|#########5| Scoring GeneralizingEstimator : 1175/1225 [00:02<00:00,  506.33it/s]
 97%|#########7| Scoring GeneralizingEstimator : 1194/1225 [00:02<00:00,  509.22it/s]
 99%|#########9| Scoring GeneralizingEstimator : 1213/1225 [00:02<00:00,  511.61it/s]
100%|##########| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00,  513.80it/s]
100%|##########| Scoring GeneralizingEstimator : 1225/1225 [00:02<00:00,  441.73it/s]

Plot

fig, ax = plt.subplots(constrained_layout=True)
im = ax.matshow(scores, vmin=0, vmax=1., cmap='RdBu_r', origin='lower',
                extent=epochs.times[[0, -1, 0, -1]])
ax.axhline(0., color='k')
ax.axvline(0., color='k')
ax.xaxis.set_ticks_position('bottom')
ax.set_xlabel('Condition: "Right"\nTesting Time (s)',)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title('Generalization across time and condition', fontweight='bold')
fig.colorbar(im, ax=ax, label='Performance (ROC AUC)')
plt.show()
Generalization across time and condition

References#

Total running time of the script: ( 0 minutes 8.009 seconds)

Estimated memory usage: 128 MB

Gallery generated by Sphinx-Gallery