Note

Click here to download the full example code

# Corrupt known signal with point spread#

The aim of this tutorial is to demonstrate how to put a known signal at a
desired location(s) in a `mne.SourceEstimate`

and then corrupt the
signal with point-spread by applying a forward and inverse solution.

```
import os.path as op
import numpy as np
import mne
from mne.datasets import sample
from mne.minimum_norm import read_inverse_operator, apply_inverse
from mne.simulation import simulate_stc, simulate_evoked
```

First, we set some parameters.

```
seed = 42
# parameters for inverse method
method = 'sLORETA'
snr = 3.
lambda2 = 1.0 / snr ** 2
# signal simulation parameters
# do not add extra noise to the known signals
nave = np.inf
T = 100
times = np.linspace(0, 1, T)
dt = times[1] - times[0]
# Paths to MEG data
data_path = sample.data_path()
subjects_dir = op.join(data_path, 'subjects')
fname_fwd = op.join(data_path, 'MEG', 'sample',
'sample_audvis-meg-oct-6-fwd.fif')
fname_inv = op.join(data_path, 'MEG', 'sample',
'sample_audvis-meg-oct-6-meg-fixed-inv.fif')
fname_evoked = op.join(data_path, 'MEG', 'sample',
'sample_audvis-ave.fif')
```

## Load the MEG data#

```
fwd = mne.read_forward_solution(fname_fwd)
fwd = mne.convert_forward_solution(fwd, force_fixed=True, surf_ori=True,
use_cps=False)
fwd['info']['bads'] = []
inv_op = read_inverse_operator(fname_inv)
raw = mne.io.read_raw_fif(op.join(data_path, 'MEG', 'sample',
'sample_audvis_raw.fif'))
raw.set_eeg_reference(projection=True)
events = mne.find_events(raw)
event_id = {'Auditory/Left': 1, 'Auditory/Right': 2}
epochs = mne.Epochs(raw, events, event_id, baseline=(None, 0), preload=True)
epochs.info['bads'] = []
evoked = epochs.average()
labels = mne.read_labels_from_annot('sample', subjects_dir=subjects_dir)
label_names = [label.name for label in labels]
n_labels = len(labels)
```

```
Reading forward solution from /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis-meg-oct-6-fwd.fif...
Reading a source space...
Computing patch statistics...
Patch information added...
Distance information added...
[done]
Reading a source space...
Computing patch statistics...
Patch information added...
Distance information added...
[done]
2 source spaces read
Desired named matrix (kind = 3523) not available
Read MEG forward solution (7498 sources, 306 channels, free orientations)
Source spaces transformed to the forward solution coordinate frame
Changing to fixed-orientation forward solution with surface-based source orientations...
[done]
Reading inverse operator decomposition from /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis-meg-oct-6-meg-fixed-inv.fif...
Reading inverse operator info...
[done]
Reading inverse operator decomposition...
[done]
305 x 305 full covariance (kind = 1) found.
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Noise covariance matrix read.
7498 x 7498 diagonal covariance (kind = 2) found.
Source covariance matrix read.
Did not find the desired covariance matrix (kind = 6)
7498 x 7498 diagonal covariance (kind = 5) found.
Depth priors read.
Did not find the desired covariance matrix (kind = 3)
Reading a source space...
Computing patch statistics...
Patch information added...
Distance information added...
[done]
Reading a source space...
Computing patch statistics...
Patch information added...
Distance information added...
[done]
2 source spaces read
Read a total of 4 projection items:
PCA-v1 (1 x 102) active
PCA-v2 (1 x 102) active
PCA-v3 (1 x 102) active
Average EEG reference (1 x 60) active
Source spaces transformed to the inverse solution coordinate frame
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_raw.fif...
Read a total of 3 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Range : 25800 ... 192599 = 42.956 ... 320.670 secs
Ready.
Adding average EEG reference projection.
1 projection items deactivated
320 events found
Event IDs: [ 1 2 3 4 5 32]
Not setting metadata
145 matching events found
Setting baseline interval to [-0.19979521315838786, 0.0] sec
Applying baseline correction (mode: mean)
Created an SSP operator (subspace dimension = 4)
4 projection items activated
Loading data for 145 events and 421 original time points ...
0 bad epochs dropped
Reading labels from parcellation...
read 34 labels from /home/circleci/mne_data/MNE-sample-data/subjects/sample/label/lh.aparc.annot
read 34 labels from /home/circleci/mne_data/MNE-sample-data/subjects/sample/label/rh.aparc.annot
```

## Estimate the background noise covariance from the baseline period#

```
cov = mne.compute_covariance(epochs, tmin=None, tmax=0.)
```

```
Computing rank from data with rank=None
Using tolerance 1.4e-08 (2.2e-16 eps * 306 dim * 2.1e+05 max singular value)
Estimated rank (mag + grad): 303
MEG: rank 303 computed from 306 data channels with 3 projectors
Using tolerance 4.9e-11 (2.2e-16 eps * 60 dim * 3.7e+03 max singular value)
Estimated rank (eeg): 59
EEG: rank 59 computed from 60 data channels with 1 projector
Created an SSP operator (subspace dimension = 4)
Setting small MEG eigenvalues to zero (without PCA)
Setting small EEG eigenvalues to zero (without PCA)
Reducing data rank from 366 -> 362
Estimating covariance using EMPIRICAL
Done.
Number of samples used : 17545
[done]
```

## Generate sinusoids in two spatially distant labels#

```
# The known signal is all zero-s off of the two labels of interest
signal = np.zeros((n_labels, T))
idx = label_names.index('inferiorparietal-lh')
signal[idx, :] = 1e-7 * np.sin(5 * 2 * np.pi * times)
idx = label_names.index('rostralmiddlefrontal-rh')
signal[idx, :] = 1e-7 * np.sin(7 * 2 * np.pi * times)
```

## Find the center vertices in source space of each label#

We want the known signal in each label to only be active at the center. We create a mask for each label that is 1 at the center vertex and 0 at all other vertices in the label. This mask is then used when simulating source-space data.

```
hemi_to_ind = {'lh': 0, 'rh': 1}
for i, label in enumerate(labels):
# The `center_of_mass` function needs labels to have values.
labels[i].values.fill(1.)
# Restrict the eligible vertices to be those on the surface under
# consideration and within the label.
surf_vertices = fwd['src'][hemi_to_ind[label.hemi]]['vertno']
restrict_verts = np.intersect1d(surf_vertices, label.vertices)
com = labels[i].center_of_mass(subjects_dir=subjects_dir,
restrict_vertices=restrict_verts,
surf='white')
# Convert the center of vertex index from surface vertex list to Label's
# vertex list.
cent_idx = np.where(label.vertices == com)[0][0]
# Create a mask with 1 at center vertex and zeros elsewhere.
labels[i].values.fill(0.)
labels[i].values[cent_idx] = 1.
# Print some useful information about this vertex and label
if 'transversetemporal' in label.name:
dist, _ = label.distances_to_outside(
subjects_dir=subjects_dir)
dist = dist[cent_idx]
area = label.compute_area(subjects_dir=subjects_dir)
# convert to equivalent circular radius
r = np.sqrt(area / np.pi)
print(f'{label.name} COM vertex is {dist * 1e3:0.1f} mm from edge '
f'(label area equivalent to a circle with r={r * 1e3:0.1f} mm)')
```

```
Triangle neighbors and vertex normals...
transversetemporal-lh COM vertex is 7.5 mm from edge (label area equivalent to a circle with r=11.5 mm)
Triangle neighbors and vertex normals...
transversetemporal-rh COM vertex is 6.8 mm from edge (label area equivalent to a circle with r=10.8 mm)
```

## Create source-space data with known signals#

Put known signals onto surface vertices using the array of signals and the label masks (stored in labels[i].values).

## Plot original signals#

Note that the original signals are highly concentrated (point) sources.

```
kwargs = dict(subjects_dir=subjects_dir, hemi='split', smoothing_steps=4,
time_unit='s', initial_time=0.05, size=1200,
views=['lat', 'med'])
clim = dict(kind='value', pos_lims=[1e-9, 1e-8, 1e-7])
brain_gen = stc_gen.plot(clim=clim, **kwargs)
```

## Simulate sensor-space signals#

Use the forward solution and add Gaussian noise to simulate sensor-space
(evoked) data from the known source-space signals. The amount of noise is
controlled by `nave`

(higher values imply less noise).

```
evoked_gen = simulate_evoked(fwd, stc_gen, evoked.info, cov, nave,
random_state=seed)
# Map the simulated sensor-space data to source-space using the inverse
# operator.
stc_inv = apply_inverse(evoked_gen, inv_op, lambda2, method=method)
```

```
Projecting source estimate to sensor space...
[done]
4 projection items deactivated
Created an SSP operator (subspace dimension = 3)
4 projection items activated
SSP projectors applied...
Preparing the inverse operator for use...
Scaled noise and source covariance from nave = 1 to nave = 1
Created the regularized inverter
Created an SSP operator (subspace dimension = 3)
Created the whitener using a noise covariance matrix with rank 302 (3 small eigenvalues omitted)
Computing noise-normalization factors (sLORETA)...
[done]
Applying inverse operator to ""...
Picked 305 channels from the data
Computing inverse...
Eigenleads need to be weighted ...
Computing residual...
Explained 99.7% variance
sLORETA...
[done]
```

## Plot the point-spread of corrupted signal#

Notice that after applying the forward- and inverse-operators to the known point sources that the point sources have spread across the source-space. This spread is due to the minimum norm solution so that the signal leaks to nearby vertices with similar orientations so that signal ends up crossing the sulci and gyri.

```
brain_inv = stc_inv.plot(**kwargs)
```

```
Using control points [0.45968308 0.57021267 1.69354621]
```

## Exercises#

Change the

`method`

parameter to either`'dSPM'`

or`'MNE'`

to explore the effect of the inverse method.Try setting

`evoked_snr`

to a small, finite value, e.g. 3., to see the effect of noise.

**Total running time of the script:** ( 0 minutes 23.462 seconds)

**Estimated memory usage:** 574 MB