Note
Go to the end to download the full example code.
Decoding sensor space data with generalization across time and conditions#
This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.
# Authors: Jean-Rémi King <jeanremi.king@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator
print(__doc__)
# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads") # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin") # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
"Auditory/Left": 1,
"Auditory/Right": 2,
"Visual/Left": 3,
"Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
raw,
events,
event_id=event_id,
tmin=tmin,
tmax=tmax,
proj=True,
picks=picks,
baseline=None,
preload=True,
reject=dict(mag=5e-12),
decim=decim,
verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
Read a total of 4 projection items:
PCA-v1 (1 x 102) idle
PCA-v2 (1 x 102) idle
PCA-v3 (1 x 102) idle
Average EEG reference (1 x 60) idle
Range : 6450 ... 48149 = 42.956 ... 320.665 secs
Ready.
Reading 0 ... 41699 = 0.000 ... 277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz
FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)
We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.
clf = make_pipeline(
StandardScaler(),
LogisticRegression(solver="liblinear"), # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)
# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
0%| | Fitting GeneralizingEstimator : 0/35 [00:00<?, ?it/s]
6%|▌ | Fitting GeneralizingEstimator : 2/35 [00:00<00:00, 55.71it/s]
11%|█▏ | Fitting GeneralizingEstimator : 4/35 [00:00<00:00, 57.55it/s]
17%|█▋ | Fitting GeneralizingEstimator : 6/35 [00:00<00:00, 58.19it/s]
23%|██▎ | Fitting GeneralizingEstimator : 8/35 [00:00<00:00, 58.51it/s]
31%|███▏ | Fitting GeneralizingEstimator : 11/35 [00:00<00:00, 65.17it/s]
40%|████ | Fitting GeneralizingEstimator : 14/35 [00:00<00:00, 69.66it/s]
49%|████▊ | Fitting GeneralizingEstimator : 17/35 [00:00<00:00, 72.87it/s]
57%|█████▋ | Fitting GeneralizingEstimator : 20/35 [00:00<00:00, 75.22it/s]
63%|██████▎ | Fitting GeneralizingEstimator : 22/35 [00:00<00:00, 72.36it/s]
71%|███████▏ | Fitting GeneralizingEstimator : 25/35 [00:00<00:00, 74.43it/s]
77%|███████▋ | Fitting GeneralizingEstimator : 27/35 [00:00<00:00, 72.71it/s]
83%|████████▎ | Fitting GeneralizingEstimator : 29/35 [00:00<00:00, 71.27it/s]
91%|█████████▏| Fitting GeneralizingEstimator : 32/35 [00:00<00:00, 73.08it/s]
97%|█████████▋| Fitting GeneralizingEstimator : 34/35 [00:00<00:00, 71.76it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00, 73.15it/s]
Score on the epochs where the stimulus was presented to the right.
scores = time_gen.score(
X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
0%| | Scoring GeneralizingEstimator : 0/1225 [00:00<?, ?it/s]
1%| | Scoring GeneralizingEstimator : 12/1225 [00:00<00:03, 329.92it/s]
2%|▏ | Scoring GeneralizingEstimator : 23/1225 [00:00<00:03, 327.46it/s]
3%|▎ | Scoring GeneralizingEstimator : 34/1225 [00:00<00:03, 326.90it/s]
4%|▍ | Scoring GeneralizingEstimator : 46/1225 [00:00<00:03, 333.93it/s]
5%|▍ | Scoring GeneralizingEstimator : 57/1225 [00:00<00:03, 332.43it/s]
6%|▌ | Scoring GeneralizingEstimator : 69/1225 [00:00<00:03, 336.34it/s]
7%|▋ | Scoring GeneralizingEstimator : 80/1225 [00:00<00:03, 334.70it/s]
7%|▋ | Scoring GeneralizingEstimator : 91/1225 [00:00<00:03, 333.46it/s]
8%|▊ | Scoring GeneralizingEstimator : 103/1225 [00:00<00:03, 334.92it/s]
9%|▉ | Scoring GeneralizingEstimator : 115/1225 [00:00<00:03, 337.57it/s]
10%|█ | Scoring GeneralizingEstimator : 126/1225 [00:00<00:03, 336.18it/s]
11%|█ | Scoring GeneralizingEstimator : 137/1225 [00:00<00:03, 335.13it/s]
12%|█▏ | Scoring GeneralizingEstimator : 150/1225 [00:00<00:03, 338.37it/s]
13%|█▎ | Scoring GeneralizingEstimator : 162/1225 [00:00<00:03, 337.47it/s]
14%|█▍ | Scoring GeneralizingEstimator : 174/1225 [00:00<00:03, 339.00it/s]
15%|█▌ | Scoring GeneralizingEstimator : 186/1225 [00:00<00:03, 340.22it/s]
16%|█▌ | Scoring GeneralizingEstimator : 197/1225 [00:00<00:03, 339.04it/s]
17%|█▋ | Scoring GeneralizingEstimator : 209/1225 [00:00<00:02, 340.45it/s]
18%|█▊ | Scoring GeneralizingEstimator : 221/1225 [00:00<00:02, 341.77it/s]
19%|█▉ | Scoring GeneralizingEstimator : 233/1225 [00:00<00:02, 342.93it/s]
20%|██ | Scoring GeneralizingEstimator : 245/1225 [00:00<00:02, 343.84it/s]
21%|██ | Scoring GeneralizingEstimator : 255/1225 [00:00<00:02, 339.78it/s]
22%|██▏ | Scoring GeneralizingEstimator : 264/1225 [00:00<00:02, 334.61it/s]
23%|██▎ | Scoring GeneralizingEstimator : 278/1225 [00:00<00:02, 340.14it/s]
24%|██▍ | Scoring GeneralizingEstimator : 292/1225 [00:00<00:02, 332.04it/s]
25%|██▍ | Scoring GeneralizingEstimator : 304/1225 [00:00<00:02, 332.66it/s]
26%|██▌ | Scoring GeneralizingEstimator : 318/1225 [00:00<00:02, 337.80it/s]
27%|██▋ | Scoring GeneralizingEstimator : 331/1225 [00:00<00:02, 337.44it/s]
28%|██▊ | Scoring GeneralizingEstimator : 338/1225 [00:01<00:02, 329.51it/s]
29%|██▊ | Scoring GeneralizingEstimator : 350/1225 [00:01<00:02, 330.46it/s]
30%|██▉ | Scoring GeneralizingEstimator : 363/1225 [00:01<00:02, 333.80it/s]
31%|███ | Scoring GeneralizingEstimator : 375/1225 [00:01<00:02, 335.13it/s]
32%|███▏ | Scoring GeneralizingEstimator : 388/1225 [00:01<00:02, 337.97it/s]
33%|███▎ | Scoring GeneralizingEstimator : 399/1225 [00:01<00:02, 330.59it/s]
33%|███▎ | Scoring GeneralizingEstimator : 410/1225 [00:01<00:02, 330.38it/s]
34%|███▍ | Scoring GeneralizingEstimator : 422/1225 [00:01<00:02, 331.59it/s]
35%|███▌ | Scoring GeneralizingEstimator : 433/1225 [00:01<00:02, 331.32it/s]
36%|███▋ | Scoring GeneralizingEstimator : 445/1225 [00:01<00:02, 332.72it/s]
37%|███▋ | Scoring GeneralizingEstimator : 458/1225 [00:01<00:02, 335.52it/s]
38%|███▊ | Scoring GeneralizingEstimator : 471/1225 [00:01<00:02, 338.12it/s]
39%|███▉ | Scoring GeneralizingEstimator : 483/1225 [00:01<00:02, 339.15it/s]
40%|████ | Scoring GeneralizingEstimator : 494/1225 [00:01<00:02, 338.36it/s]
41%|████ | Scoring GeneralizingEstimator : 505/1225 [00:01<00:02, 337.66it/s]
42%|████▏ | Scoring GeneralizingEstimator : 519/1225 [00:01<00:02, 341.82it/s]
44%|████▎ | Scoring GeneralizingEstimator : 533/1225 [00:01<00:02, 345.73it/s]
44%|████▍ | Scoring GeneralizingEstimator : 545/1225 [00:01<00:01, 346.32it/s]
46%|████▌ | Scoring GeneralizingEstimator : 558/1225 [00:01<00:01, 348.41it/s]
47%|████▋ | Scoring GeneralizingEstimator : 571/1225 [00:01<00:01, 350.21it/s]
48%|████▊ | Scoring GeneralizingEstimator : 584/1225 [00:01<00:01, 351.92it/s]
49%|████▊ | Scoring GeneralizingEstimator : 595/1225 [00:01<00:01, 350.56it/s]
49%|████▉ | Scoring GeneralizingEstimator : 606/1225 [00:01<00:01, 349.29it/s]
51%|█████ | Scoring GeneralizingEstimator : 619/1225 [00:01<00:01, 349.88it/s]
52%|█████▏ | Scoring GeneralizingEstimator : 632/1225 [00:01<00:01, 351.70it/s]
53%|█████▎ | Scoring GeneralizingEstimator : 644/1225 [00:01<00:01, 351.95it/s]
54%|█████▎ | Scoring GeneralizingEstimator : 657/1225 [00:01<00:01, 353.72it/s]
55%|█████▍ | Scoring GeneralizingEstimator : 668/1225 [00:01<00:01, 352.33it/s]
55%|█████▌ | Scoring GeneralizingEstimator : 679/1225 [00:01<00:01, 350.95it/s]
56%|█████▋ | Scoring GeneralizingEstimator : 691/1225 [00:02<00:01, 351.21it/s]
58%|█████▊ | Scoring GeneralizingEstimator : 705/1225 [00:02<00:01, 354.53it/s]
59%|█████▊ | Scoring GeneralizingEstimator : 719/1225 [00:02<00:01, 357.61it/s]
60%|█████▉ | Scoring GeneralizingEstimator : 731/1225 [00:02<00:01, 357.22it/s]
61%|██████ | Scoring GeneralizingEstimator : 745/1225 [00:02<00:01, 358.80it/s]
62%|██████▏ | Scoring GeneralizingEstimator : 758/1225 [00:02<00:01, 359.98it/s]
63%|██████▎ | Scoring GeneralizingEstimator : 770/1225 [00:02<00:01, 359.53it/s]
64%|██████▍ | Scoring GeneralizingEstimator : 781/1225 [00:02<00:01, 357.88it/s]
65%|██████▍ | Scoring GeneralizingEstimator : 792/1225 [00:02<00:01, 356.29it/s]
66%|██████▌ | Scoring GeneralizingEstimator : 805/1225 [00:02<00:01, 357.80it/s]
67%|██████▋ | Scoring GeneralizingEstimator : 818/1225 [00:02<00:01, 359.24it/s]
68%|██████▊ | Scoring GeneralizingEstimator : 830/1225 [00:02<00:01, 359.11it/s]
69%|██████▊ | Scoring GeneralizingEstimator : 842/1225 [00:02<00:01, 358.97it/s]
70%|██████▉ | Scoring GeneralizingEstimator : 854/1225 [00:02<00:01, 357.38it/s]
71%|███████ | Scoring GeneralizingEstimator : 867/1225 [00:02<00:00, 358.76it/s]
72%|███████▏ | Scoring GeneralizingEstimator : 880/1225 [00:02<00:00, 360.09it/s]
73%|███████▎ | Scoring GeneralizingEstimator : 893/1225 [00:02<00:00, 361.40it/s]
74%|███████▍ | Scoring GeneralizingEstimator : 907/1225 [00:02<00:00, 364.02it/s]
75%|███████▌ | Scoring GeneralizingEstimator : 919/1225 [00:02<00:00, 363.54it/s]
76%|███████▌ | Scoring GeneralizingEstimator : 932/1225 [00:02<00:00, 364.44it/s]
77%|███████▋ | Scoring GeneralizingEstimator : 944/1225 [00:02<00:00, 364.03it/s]
78%|███████▊ | Scoring GeneralizingEstimator : 957/1225 [00:02<00:00, 365.10it/s]
79%|███████▉ | Scoring GeneralizingEstimator : 968/1225 [00:02<00:00, 363.16it/s]
80%|███████▉ | Scoring GeneralizingEstimator : 979/1225 [00:02<00:00, 361.30it/s]
81%|████████ | Scoring GeneralizingEstimator : 993/1225 [00:02<00:00, 362.70it/s]
82%|████████▏ | Scoring GeneralizingEstimator : 1006/1225 [00:02<00:00, 363.90it/s]
83%|████████▎ | Scoring GeneralizingEstimator : 1018/1225 [00:02<00:00, 363.53it/s]
84%|████████▍ | Scoring GeneralizingEstimator : 1030/1225 [00:02<00:00, 363.11it/s]
85%|████████▍ | Scoring GeneralizingEstimator : 1041/1225 [00:02<00:00, 361.27it/s]
86%|████████▌ | Scoring GeneralizingEstimator : 1054/1225 [00:02<00:00, 362.50it/s]
87%|████████▋ | Scoring GeneralizingEstimator : 1068/1225 [00:03<00:00, 365.09it/s]
88%|████████▊ | Scoring GeneralizingEstimator : 1081/1225 [00:03<00:00, 366.12it/s]
89%|████████▉ | Scoring GeneralizingEstimator : 1093/1225 [00:03<00:00, 365.64it/s]
90%|█████████ | Scoring GeneralizingEstimator : 1106/1225 [00:03<00:00, 366.59it/s]
91%|█████████▏| Scoring GeneralizingEstimator : 1120/1225 [00:03<00:00, 367.88it/s]
92%|█████████▏| Scoring GeneralizingEstimator : 1131/1225 [00:03<00:00, 365.83it/s]
93%|█████████▎| Scoring GeneralizingEstimator : 1142/1225 [00:03<00:00, 363.84it/s]
94%|█████████▍| Scoring GeneralizingEstimator : 1154/1225 [00:03<00:00, 363.46it/s]
95%|█████████▌| Scoring GeneralizingEstimator : 1167/1225 [00:03<00:00, 364.64it/s]
96%|█████████▋| Scoring GeneralizingEstimator : 1180/1225 [00:03<00:00, 365.71it/s]
97%|█████████▋| Scoring GeneralizingEstimator : 1192/1225 [00:03<00:00, 365.20it/s]
98%|█████████▊| Scoring GeneralizingEstimator : 1203/1225 [00:03<00:00, 363.27it/s]
99%|█████████▉| Scoring GeneralizingEstimator : 1215/1225 [00:03<00:00, 361.02it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00, 362.65it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00, 353.53it/s]
Plot
fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
scores,
vmin=0,
vmax=1.0,
cmap="RdBu_r",
origin="lower",
extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()

References#
Total running time of the script: (0 minutes 5.888 seconds)