Decoding sensor space data with generalization across time and conditions#

This example runs the analysis described in [1]. It illustrates how one can fit a linear classifier to identify a discriminatory topography at a given time instant and subsequently assess whether this linear model can accurately predict all of the time samples of a second set of conditions.

# Authors: Jean-Remi King <jeanremi.king@gmail.com>
#          Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Denis Engemann <denis.engemann@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

import mne
from mne.datasets import sample
from mne.decoding import GeneralizingEstimator

print(__doc__)

# Preprocess data
data_path = sample.data_path()
# Load and filter data, set up epochs
meg_path = data_path / "MEG" / "sample"
raw_fname = meg_path / "sample_audvis_filt-0-40_raw.fif"
events_fname = meg_path / "sample_audvis_filt-0-40_raw-eve.fif"
raw = mne.io.read_raw_fif(raw_fname, preload=True)
picks = mne.pick_types(raw.info, meg=True, exclude="bads")  # Pick MEG channels
raw.filter(1.0, 30.0, fir_design="firwin")  # Band pass filtering signals
events = mne.read_events(events_fname)
event_id = {
    "Auditory/Left": 1,
    "Auditory/Right": 2,
    "Visual/Left": 3,
    "Visual/Right": 4,
}
tmin = -0.050
tmax = 0.400
# decimate to make the example faster to run, but then use verbose='error' in
# the Epochs constructor to suppress warning about decimation causing aliasing
decim = 2
epochs = mne.Epochs(
    raw,
    events,
    event_id=event_id,
    tmin=tmin,
    tmax=tmax,
    proj=True,
    picks=picks,
    baseline=None,
    preload=True,
    reject=dict(mag=5e-12),
    decim=decim,
    verbose="error",
)
Opening raw data file /home/circleci/mne_data/MNE-sample-data/MEG/sample/sample_audvis_filt-0-40_raw.fif...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102)  idle
        PCA-v2 (1 x 102)  idle
        PCA-v3 (1 x 102)  idle
        Average EEG reference (1 x 60)  idle
    Range : 6450 ... 48149 =     42.956 ...   320.665 secs
Ready.
Reading 0 ... 41699  =      0.000 ...   277.709 secs...
Filtering raw data in 1 contiguous segment
Setting up band-pass filter from 1 - 30 Hz

FIR filter parameters
---------------------
Designing a one-pass, zero-phase, non-causal bandpass filter:
- Windowed time-domain design (firwin) method
- Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation
- Lower passband edge: 1.00
- Lower transition bandwidth: 1.00 Hz (-6 dB cutoff frequency: 0.50 Hz)
- Upper passband edge: 30.00 Hz
- Upper transition bandwidth: 7.50 Hz (-6 dB cutoff frequency: 33.75 Hz)
- Filter length: 497 samples (3.310 s)

[Parallel(n_jobs=1)]: Done  17 tasks      | elapsed:    0.0s
[Parallel(n_jobs=1)]: Done  71 tasks      | elapsed:    0.1s
[Parallel(n_jobs=1)]: Done 161 tasks      | elapsed:    0.3s
[Parallel(n_jobs=1)]: Done 287 tasks      | elapsed:    0.5s

We will train the classifier on all left visual vs auditory trials and test on all right visual vs auditory trials.

clf = make_pipeline(
    StandardScaler(),
    LogisticRegression(solver="liblinear"),  # liblinear is faster than lbfgs
)
time_gen = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=None, verbose=True)

# Fit classifiers on the epochs where the stimulus was presented to the left.
# Note that the experimental condition y indicates auditory or visual
time_gen.fit(X=epochs["Left"].get_data(copy=False), y=epochs["Left"].events[:, 2] > 2)
  0%|          | Fitting GeneralizingEstimator : 0/35 [00:00<?,       ?it/s]
  3%|▎         | Fitting GeneralizingEstimator : 1/35 [00:00<00:01,   29.12it/s]
  9%|▊         | Fitting GeneralizingEstimator : 3/35 [00:00<00:00,   44.30it/s]
 14%|█▍        | Fitting GeneralizingEstimator : 5/35 [00:00<00:00,   49.10it/s]
 17%|█▋        | Fitting GeneralizingEstimator : 6/35 [00:00<00:00,   43.90it/s]
 23%|██▎       | Fitting GeneralizingEstimator : 8/35 [00:00<00:00,   47.24it/s]
 31%|███▏      | Fitting GeneralizingEstimator : 11/35 [00:00<00:00,   54.98it/s]
 40%|████      | Fitting GeneralizingEstimator : 14/35 [00:00<00:00,   60.51it/s]
 49%|████▊     | Fitting GeneralizingEstimator : 17/35 [00:00<00:00,   64.64it/s]
 57%|█████▋    | Fitting GeneralizingEstimator : 20/35 [00:00<00:00,   67.85it/s]
 63%|██████▎   | Fitting GeneralizingEstimator : 22/35 [00:00<00:00,   66.75it/s]
 71%|███████▏  | Fitting GeneralizingEstimator : 25/35 [00:00<00:00,   69.03it/s]
 74%|███████▍  | Fitting GeneralizingEstimator : 26/35 [00:00<00:00,   64.78it/s]
 83%|████████▎ | Fitting GeneralizingEstimator : 29/35 [00:00<00:00,   67.23it/s]
 89%|████████▊ | Fitting GeneralizingEstimator : 31/35 [00:00<00:00,   66.45it/s]
 97%|█████████▋| Fitting GeneralizingEstimator : 34/35 [00:00<00:00,   68.53it/s]
100%|██████████| Fitting GeneralizingEstimator : 35/35 [00:00<00:00,   67.50it/s]

Score on the epochs where the stimulus was presented to the right.

scores = time_gen.score(
    X=epochs["Right"].get_data(copy=False), y=epochs["Right"].events[:, 2] > 2
)
  0%|          | Scoring GeneralizingEstimator : 0/1225 [00:00<?,       ?it/s]
  1%|          | Scoring GeneralizingEstimator : 10/1225 [00:00<00:04,  292.15it/s]
  2%|▏         | Scoring GeneralizingEstimator : 23/1225 [00:00<00:03,  336.46it/s]
  3%|▎         | Scoring GeneralizingEstimator : 34/1225 [00:00<00:03,  331.38it/s]
  4%|▍         | Scoring GeneralizingEstimator : 48/1225 [00:00<00:03,  353.42it/s]
  5%|▍         | Scoring GeneralizingEstimator : 61/1225 [00:00<00:03,  359.19it/s]
  6%|▌         | Scoring GeneralizingEstimator : 74/1225 [00:00<00:03,  363.60it/s]
  7%|▋         | Scoring GeneralizingEstimator : 88/1225 [00:00<00:03,  371.75it/s]
  8%|▊         | Scoring GeneralizingEstimator : 103/1225 [00:00<00:02,  382.37it/s]
 10%|▉         | Scoring GeneralizingEstimator : 117/1225 [00:00<00:02,  385.80it/s]
 11%|█         | Scoring GeneralizingEstimator : 132/1225 [00:00<00:02,  392.27it/s]
 12%|█▏        | Scoring GeneralizingEstimator : 147/1225 [00:00<00:02,  398.13it/s]
 13%|█▎        | Scoring GeneralizingEstimator : 162/1225 [00:00<00:02,  403.12it/s]
 14%|█▍        | Scoring GeneralizingEstimator : 177/1225 [00:00<00:02,  406.84it/s]
 15%|█▌        | Scoring GeneralizingEstimator : 189/1225 [00:00<00:02,  401.65it/s]
 17%|█▋        | Scoring GeneralizingEstimator : 203/1225 [00:00<00:02,  402.71it/s]
 18%|█▊        | Scoring GeneralizingEstimator : 217/1225 [00:00<00:02,  403.62it/s]
 19%|█▉        | Scoring GeneralizingEstimator : 231/1225 [00:00<00:02,  404.29it/s]
 20%|██        | Scoring GeneralizingEstimator : 246/1225 [00:00<00:02,  406.85it/s]
 21%|██▏       | Scoring GeneralizingEstimator : 261/1225 [00:00<00:02,  409.54it/s]
 23%|██▎       | Scoring GeneralizingEstimator : 276/1225 [00:00<00:02,  412.27it/s]
 24%|██▍       | Scoring GeneralizingEstimator : 291/1225 [00:00<00:02,  414.70it/s]
 25%|██▌       | Scoring GeneralizingEstimator : 307/1225 [00:00<00:02,  419.02it/s]
 26%|██▋       | Scoring GeneralizingEstimator : 322/1225 [00:00<00:02,  420.44it/s]
 28%|██▊       | Scoring GeneralizingEstimator : 337/1225 [00:00<00:02,  422.07it/s]
 29%|██▉       | Scoring GeneralizingEstimator : 353/1225 [00:00<00:02,  425.63it/s]
 30%|███       | Scoring GeneralizingEstimator : 368/1225 [00:00<00:02,  426.84it/s]
 31%|███▏      | Scoring GeneralizingEstimator : 384/1225 [00:00<00:01,  429.76it/s]
 33%|███▎      | Scoring GeneralizingEstimator : 399/1225 [00:00<00:01,  430.21it/s]
 34%|███▍      | Scoring GeneralizingEstimator : 414/1225 [00:00<00:01,  431.07it/s]
 35%|███▍      | Scoring GeneralizingEstimator : 428/1225 [00:01<00:01,  430.03it/s]
 36%|███▌      | Scoring GeneralizingEstimator : 443/1225 [00:01<00:01,  430.88it/s]
 37%|███▋      | Scoring GeneralizingEstimator : 456/1225 [00:01<00:01,  427.73it/s]
 38%|███▊      | Scoring GeneralizingEstimator : 470/1225 [00:01<00:01,  426.88it/s]
 39%|███▉      | Scoring GeneralizingEstimator : 480/1225 [00:01<00:01,  418.88it/s]
 40%|████      | Scoring GeneralizingEstimator : 494/1225 [00:01<00:01,  418.25it/s]
 41%|████▏     | Scoring GeneralizingEstimator : 508/1225 [00:01<00:01,  417.62it/s]
 43%|████▎     | Scoring GeneralizingEstimator : 524/1225 [00:01<00:01,  420.84it/s]
 44%|████▍     | Scoring GeneralizingEstimator : 539/1225 [00:01<00:01,  422.14it/s]
 45%|████▌     | Scoring GeneralizingEstimator : 553/1225 [00:01<00:01,  421.67it/s]
 46%|████▌     | Scoring GeneralizingEstimator : 564/1225 [00:01<00:01,  415.89it/s]
 47%|████▋     | Scoring GeneralizingEstimator : 577/1225 [00:01<00:01,  413.81it/s]
 48%|████▊     | Scoring GeneralizingEstimator : 588/1225 [00:01<00:01,  408.89it/s]
 49%|████▉     | Scoring GeneralizingEstimator : 602/1225 [00:01<00:01,  409.12it/s]
 50%|█████     | Scoring GeneralizingEstimator : 618/1225 [00:01<00:01,  412.74it/s]
 52%|█████▏    | Scoring GeneralizingEstimator : 632/1225 [00:01<00:01,  412.85it/s]
 53%|█████▎    | Scoring GeneralizingEstimator : 646/1225 [00:01<00:01,  412.97it/s]
 54%|█████▍    | Scoring GeneralizingEstimator : 660/1225 [00:01<00:01,  412.78it/s]
 55%|█████▌    | Scoring GeneralizingEstimator : 676/1225 [00:01<00:01,  415.78it/s]
 56%|█████▋    | Scoring GeneralizingEstimator : 691/1225 [00:01<00:01,  416.89it/s]
 57%|█████▋    | Scoring GeneralizingEstimator : 701/1225 [00:01<00:01,  410.23it/s]
 58%|█████▊    | Scoring GeneralizingEstimator : 712/1225 [00:01<00:01,  405.32it/s]
 59%|█████▉    | Scoring GeneralizingEstimator : 720/1225 [00:01<00:01,  396.31it/s]
 60%|█████▉    | Scoring GeneralizingEstimator : 731/1225 [00:01<00:01,  392.55it/s]
 61%|██████    | Scoring GeneralizingEstimator : 745/1225 [00:01<00:01,  393.57it/s]
 62%|██████▏   | Scoring GeneralizingEstimator : 759/1225 [00:01<00:01,  394.63it/s]
 63%|██████▎   | Scoring GeneralizingEstimator : 772/1225 [00:01<00:01,  394.04it/s]
 64%|██████▍   | Scoring GeneralizingEstimator : 783/1225 [00:01<00:01,  390.42it/s]
 65%|██████▍   | Scoring GeneralizingEstimator : 796/1225 [00:01<00:01,  390.13it/s]
 66%|██████▌   | Scoring GeneralizingEstimator : 811/1225 [00:02<00:01,  392.87it/s]
 67%|██████▋   | Scoring GeneralizingEstimator : 825/1225 [00:02<00:01,  393.94it/s]
 68%|██████▊   | Scoring GeneralizingEstimator : 838/1225 [00:02<00:00,  393.48it/s]
 70%|██████▉   | Scoring GeneralizingEstimator : 853/1225 [00:02<00:00,  396.10it/s]
 71%|███████   | Scoring GeneralizingEstimator : 869/1225 [00:02<00:00,  399.94it/s]
 72%|███████▏  | Scoring GeneralizingEstimator : 885/1225 [00:02<00:00,  403.57it/s]
 73%|███████▎  | Scoring GeneralizingEstimator : 899/1225 [00:02<00:00,  404.04it/s]
 75%|███████▍  | Scoring GeneralizingEstimator : 915/1225 [00:02<00:00,  407.64it/s]
 76%|███████▌  | Scoring GeneralizingEstimator : 930/1225 [00:02<00:00,  409.53it/s]
 77%|███████▋  | Scoring GeneralizingEstimator : 946/1225 [00:02<00:00,  412.54it/s]
 78%|███████▊  | Scoring GeneralizingEstimator : 960/1225 [00:02<00:00,  412.66it/s]
 80%|███████▉  | Scoring GeneralizingEstimator : 975/1225 [00:02<00:00,  414.26it/s]
 81%|████████  | Scoring GeneralizingEstimator : 989/1225 [00:02<00:00,  414.03it/s]
 82%|████████▏ | Scoring GeneralizingEstimator : 1005/1225 [00:02<00:00,  417.04it/s]
 83%|████████▎ | Scoring GeneralizingEstimator : 1012/1225 [00:02<00:00,  406.35it/s]
 84%|████████▎ | Scoring GeneralizingEstimator : 1024/1225 [00:02<00:00,  403.24it/s]
 85%|████████▍ | Scoring GeneralizingEstimator : 1037/1225 [00:02<00:00,  402.32it/s]
 86%|████████▌ | Scoring GeneralizingEstimator : 1052/1225 [00:02<00:00,  404.20it/s]
 87%|████████▋ | Scoring GeneralizingEstimator : 1067/1225 [00:02<00:00,  406.18it/s]
 88%|████████▊ | Scoring GeneralizingEstimator : 1083/1225 [00:02<00:00,  409.41it/s]
 90%|████████▉ | Scoring GeneralizingEstimator : 1098/1225 [00:02<00:00,  411.02it/s]
 91%|█████████ | Scoring GeneralizingEstimator : 1114/1225 [00:02<00:00,  413.89it/s]
 92%|█████████▏| Scoring GeneralizingEstimator : 1130/1225 [00:02<00:00,  416.88it/s]
 93%|█████████▎| Scoring GeneralizingEstimator : 1140/1225 [00:02<00:00,  410.74it/s]
 94%|█████████▍| Scoring GeneralizingEstimator : 1150/1225 [00:02<00:00,  404.98it/s]
 95%|█████████▍| Scoring GeneralizingEstimator : 1161/1225 [00:02<00:00,  400.95it/s]
 96%|█████████▌| Scoring GeneralizingEstimator : 1176/1225 [00:02<00:00,  402.82it/s]
 97%|█████████▋| Scoring GeneralizingEstimator : 1191/1225 [00:02<00:00,  404.51it/s]
 98%|█████████▊| Scoring GeneralizingEstimator : 1206/1225 [00:02<00:00,  406.51it/s]
100%|█████████▉| Scoring GeneralizingEstimator : 1220/1225 [00:02<00:00,  406.89it/s]
100%|██████████| Scoring GeneralizingEstimator : 1225/1225 [00:03<00:00,  408.09it/s]

Plot

fig, ax = plt.subplots(layout="constrained")
im = ax.matshow(
    scores,
    vmin=0,
    vmax=1.0,
    cmap="RdBu_r",
    origin="lower",
    extent=epochs.times[[0, -1, 0, -1]],
)
ax.axhline(0.0, color="k")
ax.axvline(0.0, color="k")
ax.xaxis.set_ticks_position("bottom")
ax.set_xlabel(
    'Condition: "Right"\nTesting Time (s)',
)
ax.set_ylabel('Condition: "Left"\nTraining Time (s)')
ax.set_title("Generalization across time and condition", fontweight="bold")
fig.colorbar(im, ax=ax, label="Performance (ROC AUC)")
plt.show()
Generalization across time and condition

References#

Total running time of the script: (0 minutes 8.394 seconds)

Estimated memory usage: 152 MB

Gallery generated by Sphinx-Gallery